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We investigate the ambiguity behavior of finite automata in connection with their inner structure. 

We show that the degree of ambiguity of a finitely ambiguous nondeterministic finite automaton 

(NFA) with n states is at most 5”“.n”. There is a simple criterion which characterizes the infinite 

degree of ambiguity of an NFA, and which is decidable in polynomial time. The degree of growth of 

the ambiguity of an NFA is computable in polynomial time. Starting from the first result, we discuss 

the maximal finite degree of ambiguity of an NFA with n states, and we present subclasses of NFAs 

where this quantity is of order 28’“‘. 

0. Introduction 

The degree of ambiguity is a structural parameter of a finite automaton. Let x be an 

input word of a nondeterministic finite automaton (NFA) M. The degree of ambiguity 

of x in M (da,(x)) is defined as the number of all accepting paths for x. The degree of 

ambiguity of M is the maximal degree of ambiguity of an input word of M or is 

infinite, depending on whether or not a maximum exists. In the former (latter) case 

M is called finitely (infinitely) ambiguous. The degree of growth of the ambiguity of 

M is defined as the minimal degree of a polynomial h over kJ, (NO denotes the 

semiring of all nonnegative integers) such that for each input word x of M da,(x) is at 

most h( 1 x I) if such a polynomial exists, or is infinite otherwise. In the latter case M is 

called exponentially ambiguous. We will abbreviate the degree of growth of the 
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ambiguity of M by “degree of M” and ask the reader not to mix up this notion with 

the “degree of ambiguity”. 
Only recently, the degree of ambiguity received attention in connection with the 

equivalence problems for NFAs and finite tree automata, and with the succinctness of 

representation of regular languages. For the latter we refer to [19] and [S]. For the 

former we mention that the equivalence problem is PSPACE-complete for NFAs (see 

[4]) and DEXPTIME-complete (w.r.t. log-space reductions) for finite tree automata 

[17]. For any fixed integrer k, however, the equivalence of NFAs with degree of 

ambiguity at most k can be tested in polynomial time [19, 111. The same assertion 

holds true even for finite tree automata [17]. 

The following fundamental result was proved independently by Mandel and Simon 

[13], Jacob [9] and Reutenauer [ 161: It is decidable whether or not an NFA is finitely 

ambiguous. In fact, the aim of the three mentioned papers was to show: (a) It is 

decidable whether or not a finitely generated monoid of matrices with entries in N, (or 

in a larger semiring) is finite [13, 93. (b) There is an algorithm which computes the 

degree of an NFA [ 161. Moreover, from this work the following upper bounds can be 

derived. The degree of ambiguity of a finitely ambiguous NFA with n states and input 

alphabet C is at most 

0 n2” “..’ [13], 

l ~~(“3 #‘) where f is a recursive function [9], 

l 2n.n2n.24’“3 [16]. 

The following results arose independently of [ 13,9,16]. Given any fixed integer k, it 

can be tested in polynomial time whether or not the degree of ambiguity of an NFA is 

greater than k (Stearns and Hunt III [19], see also [24]). Applying a nice matrix 

algorithm, it can be decided in polynomial space whether or not an NFA is finitely 

ambiguous (Chan and Ibarra [3]). The problem “decide on input of an NFA M and of 

iENo whether or not the degree of ambiguity of M is greater than i” is PSPACE- 

complete [3]. 

In this paper we clearly follow the contents of [22] and of the first five chapters in 

[20]. Our main results are: 

(1) The degree of ambiguity of a finitely ambiguous NFA with it states is at most 

5 n/2’ n’ (see Section 2). 

(2) There is a simple criterion (IDA) which characterizes the infinite degree of 

ambiguity of an NFA, and which is decidable in polynomial time (see Section 3). 

Generalizing (2), we obtain a polynomial-time algorithm which computes the 

degree of an NFA (see Section 4). In fact, this algorithm is based on the criteria (EDA) 

and (IDA,) which characterize the properties “M is exponentially ambiguous” and 

“the degree of M is at least d”, respectively, of an NFA M (LIEN,). 
In Section 5 we discuss, starting from (l), the maximal finite degree of ambiguity of 

an NFA with n states. We present subclasses of NFAs restricted to which this quantity 

is a function of order 2@(“). 
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By reduction, (1) and (2) can be generalized to NFAs with s-moves [20, Chapter 61. 

Moreover, all our results can be automatically transformed into assertions on finitely 

generated monoids of matrices with entries in f+J, (see [20, Chapter 71 and [ll, 231). In 

order to prove (1) and (2) we introduce new elementary methods. First of all, we show 

that it is sufficient to consider chain NFAs, which have a restricted structure. Then, for 

every input word x we investigate a graph which describes all accepting paths for x in 

the NFA, and we use “pumping arguments” in these graphs. The criterion (IDA) 

describes a simple reason for an NFA to be infinitely ambiguous. In fact, we show that 

this is the only reason. 

From another point of view, our proof of the characterization part of (2) reads as 

follows. At first, reduce the result to the case that the NFA in question has only one 

input symbol, and then verify the correctness in that easy particular case (see also [20, 

Theorem 5.11). As pointed out by the referee, this basic frame was already used in the 

above-mentioned paper by Mandel and Simon [ 131. Indeed, from [ 131 a proof of the 

correctness of the criterion (IDA) can be easily derived. In order to carry out 

the reduction to the case of one input symbol, [13] offers to use a theorem by 

McNaughton and Zalcstein [14] restricted to the nonnegative integers and also 

contains a combinatorial proof of that restricted form of the theorem. Our methods 

contribute a short combinatorial proof of the above reduction and, thus, a new 

correctness proof of the new criterion (IDA). 

Independently of us, Ibarra and Ravikumar [7] exhibited a criterion which is 

equivalent to (IDA), and which can be tested in double exponential time. The 

above-mentioned criterion (EDA) was already used in [16, 73. 

Only recently, the results and techniques presented in this paper turned out to be 

stimulating for further research on finite automata. Using an estimate of Baron [2], 

the upper bound in (1) can be improved to 2l +k2’n. PI”, where k2 co.7956 (note that 

5”” = 2k’ “‘, where k 1 z 1.1610). In [l l] this improvement and some of our results and 

proofs are presented in the context of the theory of formal power series. A new 

topological approach exhibited by Leung [12] yields an alternative proof of the 

characterization part of (2). In [23] the authors present a “nonramification” lemma for 

NFAs and apply it to finitely generated monoids of matrices with entries in Ni,. In 

fact, this lemma allows to shorten an input word of a finitely ambiguous NFA without 

changing its ambiguity behavior. Extending these ideas and the techniques presented 

in this paper the second author generalizes (1) and (2) to finite tree automata [18]. 

1. Definitions and notations 

A nondeterministic jinite automaton (NFA) is a 5-tuple M =(Q, C, 6, Q,, QF) where 

Q and C denote nonempty, finite sets of states and input symbols, respectively, 

Q,,QF~Q denote sets of initial and final (or accepting) states, respectively, and 6 is 

a subset of Q x C x Q. C is called the input alphabet of M, 6 is called the transition 

relation of M. Each element of 6 denotes a transition of M. 
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The mode of operation of M is described by paths. A path x (of length m) for x in 

M leading from p to q is a word (ql,~l)...(qm,xm)qm+I~(Q xZ)~.Q so that 

(4 1,x1,q2),...,(qm,xm,qm+1)aretransitionsofMandtheequalitiesx=x,...x,,p=q, 

and q = qm+ 1 hold. rc is said to consume x. 7t is called accepting if pEQ, and qEQF. The 

language recognized by M, denoted by L(M), is the set of words consumed by all 

accepting paths in M. 

For each (p, x, q)EQ x C* x Q da,(p, x, q) is defined as the number of all paths for 

x in M leading from p to q. We define s^:= {(p, x, q)EQ x C* x Qlda,(p, x, q)#O). 
Note that 6 = s^n Q x C x Q. We rename s^ by 6. 

The degree ofambiguity of xEC* in M (da,(x)) is the number of all accepting paths 

for x in M, i.e. da,(x)=C,,QIJ4EaF daM(p, x, q). The degree of ambiguity of 

M (da(M)) is the supremum of the set {daM(x)lxeC*}. Clearly, for all XEC*, da,(x) is 

at most ( # Q)IXI+‘. M is called injnitely ambiguous (finitely ambiguous, unambiguous), 

if da(M)=co(<a, ~1). 

A state of M is called useful if it appears on some accepting path in M; otherwise, 

this state is called useless. Useless states are irrelevant to the degree of ambiguity in M. 

If all states of M are useful, then M is called trim. 

A state PEQ is said to be connected with a state qEQ (p ++q) if some paths in M lead 

from p to q and from q to p. An equivalence class w.r.t. the relation “7” is called 

strong component of M. A transition (p, a, q) of M is called a bridge if p is not 

connected with q. 
M is said to be a chain NFA if, for some order Q1 , . . , Qk of the strong components 

of M, (PI, . ..>P.& (41, . . ..&Q1 x ... x Qk exist such that, in M, p1 (qk) is the only 

possible initial (final) state and every bridge is of the form (qi, a, pi + 1 ), where k [ k - l] 

([ml denotes the set { 1, . . . , m}) and UEC (see Fig. 1). Let M be a chain NFA such that 

L(M)#$ Then, M is trim, and Q,= {pl}, QF= {qk}. 
Let x=x1 . ..x.~C*(x~, . . . . x,EC). The graph of accepting paths for x in M (G,(x)) 

is the directed graph ( V, E), where 

l V:={(q,j)EQ~{O,...,m}I3q~~Q~3q,~QF:(q~,~1...Xj,q)~~ 

& (42 xj+ 1 ...xm~ 4FJE6}9 

l E:={((p,j--l),(q,j))~~~Ij~Cml&(~,xj,q)~S). 

Ql QZ Q3 $4 
r----- ----------7 ~------------~ r-----7 r----- ---------7 

P3 ‘43 

Fig. 1 
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Note: The number of all paths in G,(x) leading from Q, x (0) to QF x {m} equals the 

degree of ambiguity of x in M. Each vertex of G,(x) is situated on such a path. 

Let M =(Q, C, 6, Q,, QF) and M’= (Q’, C’, 6’, Q;, Qb) be two NFAs. M’ is included in 

M (M’ G M) if inclusion holds in each component. 

2. An upper bound for the finite degree of ambiguity 

Let M be a finitely ambiguous NFA with n states. In this section we show the 

following: 

(1) There are chain NFAs M,,...,M,GM such that N<.Y’12 and 

da(M)dCr=, da(Mi)< a. 

(2) If M is a chain NFA, then da(M) < n”. 

From (1) and (2) follows Theorem 2.1. 

Theorem 2.1. Let M be a$nitely ambiguous NFA with n states. Then, the degree of 

ambiguity of M is at most 5”“. n”. 

Using an estimate of Baron [2] the upper bound in Theorem 2.1 can be improved to 

2l +k2’n. n”, where k2 < 0.7956 (note that 5”” = 2k1 .“, where k, :=(log, 5)/2~ 1.1610). In 

Section 5 we state that each further improvement of this upper bound has to stop at 

21.0221’n (see Th eorem 5.1). By reduction, Theorem 2.1 can be generalized to NFAs 

with E-moves [20, Theorem 6.11. Moreover, it can be applied to finitely generated 

monoids of matrices with entries in N, ([20, Theorems 7.1 and 7.31; see [23, 

Appendix]). 

Given an NFA M and an integer i, it is decidable in polynomial space whether or 

not da(M) is greater than i [3]. Thus, Theorem 2.1 implies that the degree of 

ambiguity of an NFA can be computed in polynomial space. 

Our first lemma will show (1). In order to prove this lemma we need the following 

proposition. 

Proposition 2.2. Let n=Cf=, ni where n,, . . . . n,~fV,. Then, flF=, (nf + 1)65”“. 

Proof. It is easy to show by induction on j that for each Jo No ( j2 + 1)’ d 5j. In turn, 

this implies that nl= 1 (nf + 1)~ n:= 1 5”Z’2 = 5”“. 0 

Lemma 2.3. Let M be an NFA with n states and input alphabet C. There are chain 
NFAs MI, . . ..M.GM such that Nd5”” and the following assertions are true: 
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(i) VXEC*: daM(x)= c da,,(x). 
i=l 

N 

(ii) da(M) < CO *da(M)< C da(Mi)< CC. 
i=l 

(iii) da(M)=co *3i~[N]: da(Mi)=a. 

Proof. Let M = (Q, C, 6, Q,, QF). Let Qr , . . . , Qk be an order of the strong components 

of M so that for all i, j~[ k] the following holds: 

6nQiXC*XQj#g*idj. 

Let K be a nonempty subset of [k], let l<i,<i,<...<i,<k so that K={il,...,il}, 

and let p=(pil, . . ..pi.)), q=(qi,, . . ..qil)EQCX) :=Qi, x ... x Qi,. We construct the NFA 
&@&K)=( Uf=, Qi,, C, ,j’P.9.K), Qy-9), Q’,“-9)): 

Q~P39):=QIn{pi,}, Q’,“x9’:=QFn(qi,}, 

(p393w := (y n 

( 
Abl QiaxxXQi.u'd {q,.)XZx{PiA+lj). 

A=1 

I’@‘,~~~) is a chain NFA, which is included in M. For all XEC* we observe that 

daJx)= 1 1 daM,,.q.Kj(x). 
$#Kr[kl p,qcQ’K’ 

From Proposition 2.2 it follows that 

!&Jrn, ,.q$~Kl l= c 
fi (#Qi)““’ -1 

C (0,. . . . . ‘i&(0, I}’ ( i=l > 

=ib ((#Qi)2+1)-1<5”‘2-1<5n’2. 

This completes the proof of (i). The assertions (ii) and (iii) follow from (i). 0 

Note that in Lemma 2.3 we showed, compared to [22], a better result with a shorter 

proof. The two next lemmas will demonstrate (2). 

” 

Fig. 2 
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Lemma 2.4. Let M =(Q, C, 6, Q,, QF) b e a jinitely ambiguous NFA. Let p, qEQ be 

useful states so that p is connected with q. Then, for all XEZ*, da,(p, x, q) is at most 1. 

Proof. Assume that for some XEZ* da,(p, x, q)>2. Select UEC* so that (q, u, p)~b. 

Then, U, WEC* exist such that for all iEN, da,(u(ux)‘w)>da,(q, (ox)‘, q)>,2’ (see 

Fig. 2). Thus, da(M)= co. (Contradiction!) 0 

Lemma 2.5. Let M be a$nitely ambiguous chain NFA with n states. Then, the degree 

of ambiguity of M is at most n”. 

Proof. Let M=(Q, I,& QI, QF). Let Q1, . . ..Q.+GQ and (PI, . . ..P& (ql, . . ..q& 
Q1 x ... x Qk be given in correspondence with the definition of a chain NFA. Let 

w.1.o.g. da(M)>O. Then, M is trim, and Q, = { p1 }, QF = {qk}. We will show by 

induction on k that 

(*) da(M)<2”‘r’“g’klmk+1 

First of all, we show that the lemma follows from (*). Define to := [log, nl. 

Case I: kE{l,..., 2’“-l}. Then, n’ rlog,kl-k+l<n.(tO--l)<n.log,n. 

Case 2: kE{2’O-’ + 1, . . ..n}. Then, n’ [log, kl-k+ 1 Gn.t0-2fo-1. Consider the 

function f which maps v to v log, v -(v . to - 2’” - l ). f is continuous and differentiable 

on the open interval (0, cc). We know that f’(v) = log, V+ l/(log, 2) - to. f’ is a mono- 

tonously ascending function. Moreover, f ‘(2’O-I) > 0 and n > 2’“- ‘. From this follows 

with standard arguments that f(n) >f(2’“- ’ ) = 0, i.e. n. t,, - 2’0~1 <n. log, n. 

Proof of (*). Base of induction: k= 1. p1 is connected with ql. Thus, according to 

Lemma 2.4, M is unambiguous, i.e. da(M)= 1. 

Induction step: Let k 3 2. Define I:= r k/2 1. We (uniquely) divide M into the NFAs 

M,=(Uj=,Qi,c,s,,{~,},(q1)) and Mz=(UB=I+,Q~,~;,~~,{P~+~),{~~}) SO that 

6=6,u62u(~n{qljxCx(p,+,)). MI and M, are finitely ambiguous chain NFAs 

with n1 :=cf=, #Qi and n, :=Cl=,+, # Qi states, respectively, such that da(M,)>O 

and da(M,)>O. 

Let x=x,...x,~L(M) (xl, . . ..x.EC). Consider in the graph G,(x)=( V, E) the set 

D of all edges “leading from QI to Ql+l”: D:={((ql,j-I), (pl+l,j))EEljE[m]}. Let 

Jc[m] so that D=(((q,,j-1), (p [+ 1, j))l jEJ>. We observe (see Fig. 3) that 

da,(x)=x daM,(xl...xj_l).daMz(xj+l...~,). 
jtJ 

From this follows with the induction hypothesis that 

da,(X)< 1 p~rlog2 r&:211- rk,‘2l+l .2112.rlO& tk/211- Lk.‘2l+l 

jsJ 

< # J..2”‘rlos,(k’2)1~k+Z= # J.2wrlog,kl-n~k+2. 
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GM(X): 

QI+I “;’ 
f: 

Qk 

u Y w 

’ Xl.....Xj, ’ ’ xj,+* X& ’ ’ Xj,+l..... X, ’ 
0 j, j a m 

Fig. 3 

Note that [log, [k/21 1= rlog,(k/2)]. Therefore, in order to prove (*), it is suffi- 

cient to show that #D= # J<2”-‘. 

Assume that # J > 2”-‘. Let j6J. Define Aj:={q~QI(q,j)EV}. Clearly, 

pl+lEAjEQ. Since #J>2”-‘, jl,j2eJ exist such that j,<j, and Aj,=Aj,. 

Let US define A:=Ajl=Aj,, U:=X1...Xjl, ~l:=xj,+1...xj~_1~ u,:=x~,, y:=y,al, and 

W:=Xjl+l...X,. Then, we observe (see Fig. 3) 

VpeA:(p,w,q,)d 8~ 3qEA:(p,y,q)Ea. 

Let t~fV. From the above expressions it follows that for all r~[ t] 

This implies that daM(nyfw)= da,( pl, uy’w, qk) 2 t (see Fig. 3). Thus, da(M) = co. 

(Contradiction!) 

We remark that using an estimate of Baron [2] the upper bound in (*) can be 
slightly improved to 2~’ rhz k l-2 hzk l+ I. 0 
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Fig. 4 

3. A criterion for the infinite degree of ambiguity 

Let M = (Q, C, 6, Q,, QF) be an NFA. We introduce the following criterion (IDA) 

which characterizes the infinite degree of ambiguity of M: 

(IDA): There are distinct useful states p, ~EQ such that for some word 

UE~* (~,li,~),(~,v,q),(q,v,q)~~ (see Fig. 4). 

Let M comply with (IDA), let p,qEQ and EC* be selected according to that 

criterion. Then, u, WEC* exist such that for all HEN da,(uv’w)~da,(p,v’,q)3i. 

Thus, da(M)= a. On the other hand, assume that M is infinitely ambiguous. Then, 

according to Lemma 2.3, there is a chain NFA M’ c M which is infinitely ambiguous, 

too. In Lemma 3.3 we will show the following: 

(3) If M” is an infinitely ambiguous chain NFA, then it complies with (IDA). 

According to (3), M’ complies with (IDA) and, hence, M complies with (IDA), too. 

Therefore, we have shown that (3) implies Theorem 3.1. 

Theorem 3.1. Let M be an NFA. M is infinitely ambiguous if and only if it complies 

with (IDA). 

Let M =(Q,Z,h,QI,QF) be an NFA with n states. We sketch an algorithm which 

decides in polynomial time whether or not M complies with (IDA): 

l Remove all useless states from M. Let w.1.o.g. M be trim. 

l For all p,q~Q with p#q do the following: 

~ Construct an NFA M’ such that L( M’) = L1 n L2 n L,, where 

L1 :={=Y(PAP)E~$, L,:={vEC*I(P,v,q)E~}, 

L3:={vEC*I(q,2j,q)E6}. 

- Decide whether or not L(M’) is empty. 

In fact, the above algorithm requires time 0(n8. #Z). In Lemma 3.4 we will show the 

following: 

(4) It is decidable in time 0(n6. #C) whether or not M complies with (IDA). 
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Theorem 3.1 and assertion (4) imply Theorem 3.2. 

Theorem 3.2. Let M be an NFA with n states and input alphabet C. It is decidable in 

time O(n6. #C) whether or not M is injinitely ambiguous. 

By reduction, Theorem 3.2 can be generalized to NFAs with c-moves [20, Theorem 

6.21. Moreover, it implies a polynomial-time algorithm deciding whether or not 

a finitely generated monoid of matrices with entries in Ni, is finite ([20, Theorem 7.21; 

see [23, Appendix]). 

The following lemma shows (3) and, thus, completes the proof of Theorem 3.1. 

Lemma 3.3. Let M be an injinitely ambiguous chain NFA. Then, M complies with 

(IDA). 

Proof. Let M=(Q,Z,6,Q,,QF). Let Q1 ,..., QksQ and (PI ,... ,pk),(ql,...,qkk 
Q1 x ... x Qk be given in correspondence with the definition of a chain NFA. Since 

da(M)=a, we know that M is trim and Q,={pl},QF={qk}. 

Case 1: !l(p’,y,q’)EQxZ*xQ: p’+-+q’& da,(p’,y,q’)32. 

Then, distinct states p,qEQ and words y,,y,,y,~C* exist so that y=y,y,, 

(P’,Y~,P),(P’,Y,,~)~ (P,Y~,~‘),(~,Y~,~‘)E~, and (~‘,Y~,P’)E~ (see Fig. 5). Define 
u := y, y, y, , then {p, q > x (v} x { p, q } c 6. Hence, since p and q are useful, M complies 

with (IDA). 

Case 2: V(p’,y,q’)EU:=,QiXZ.*XQi: daM(p’,y,q’)<l. 

Let x=x1 . ..x.EL(M) (x1, . . . . x,EZ). Consider G,(x)=( V,E). Let l~[k- l] (note 

thatk32).DefineD,(x):={((q,,j-l),(p I+ 1 ,j))~Elj~[m] j. &(x) is the set of all edges 

in GM(x) “leading from Ql to QI+ 1”. According to Case 2 we know that 

(#I 

k-l 

da,(x)d#(D,(X)x...xDk-l(X))= n #o,(X). 
I=1 

Y3 

Fig. 5 
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QI+I Iat1 = so 

Sl 

S2 

S3 

Qk I 
Fig. 6 Fig. 7 

Set n:= #Q. Since da(M)= co, we may w.1.o.g. assume that da,(x)>2’“~““k-1). 

Because of ( # ) we are able to choose Ig[k- l] so that #D,(x)> 2”- I. 

The following construction is performed just like in the proof of Lemma 2.5. Let 

J~CmlsothatD,(x)={((q,,j-l),(p t+l,j))lj~J}. LetjeJ. Define Aj:={rEQI(T,j)EV}. 

Clearly, P~+~EA~cQ. Since #Dl(x)>2”-‘,j,,j,~J exist such thatj, <j, and Aj, = Aj,. 

Let US define A:=Aj,=Aj,, yl:=Xjl+1...Xj2-1, a,:=xj,, and y:=y,a,. Then, we 

observe that 

We construct states riEA(i> 1) as follows. Choose Y~EA SO that (rr ,y,, q1)E6. 

Choose ri~A SO that (ri,y,ri_i)ES (i=2,3,...). There are ii, iZEN such that 

yil=yi,+iz =: p (see Fig. 6). We construct states SiE A (i 3 0) as follows. Define so := pl+ 1. 

Choose Si~A SO that (Si-i,yJ,Si)Efi and for all jE[i- l] si_i=Sj-i implies si=sj 

(i= 1,2, . ..). There are i3ENo and i4~FU such that SiS=Si3+i4=:q and 

il + i, = 0 mod iz . i4 (see Fig. 6). In conclusion, we have (see Fig. 7) 

(P>Yi2,P)4 (p>Y”‘-’ Y1,4t),(4t,al,pt+1X(pt+l,Yi3,q)Efi, (4,Yi’,qk~. 

Since q, is not connected with p I+ 1, p and q must be distinct. Let j,EN so that 

il + i3 = j, . i, . i4, and define t’ := yjl i2 i4. Then, ( p, u, ~1, ( P, u, q 1, (4,~~ 4 W. Hence, since 

p and q are useful, M complies with (IDA). 0 

We remark that, after some slight modifications, the above proof also works for 

nonchain NFAs. Thus, Theorem 3.1 can be proved without using Lemma 2.3. Indeed, 
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the counting mechanism of this lemma, although quite elementary, is much too fine 

for our purpose here. 

In order to show (4) we need some preliminaries. In a finite, directed graph 

G =( V, E) we use the following notations: Let p, qE V. We write p 2 q, if some path in 

G leads from p to q. We write p 7 q, if some paths in G lead from p to q and from q to p. 

p~q means that p is strongly connected with q. An equivalence class w.r.t. the 

relation “7” is called a strong component of G. 

Let M =(Q, C, 6, Q,, QF) be an NFA. We define the directed graphs G3 =(Q3, E3) 

and G4 = (Q3, E4): 

E3:={((p1,p2,p3),(q1,q2,q3))EQ3xQ3l3a~CVi~{l,2,3}: (Pi>avqi)Ed), 

&:=E3u%, where Ej:=f((p,q,q),(p,p,q))lp,qEQ,pZq). 

Let M be trim. G3 allows to rewrite (IDA) as follows: 

( *) There are distinct states p, qEQ such that (p, p, q) 2 (p, q, q). 

It is easy to verify that (*) is equivalent to (IDA)‘. 

(IDA)‘: There is a strong component U of G4 so that U 2 n E; ##. 

The following lemma shows (4) and, thus, completes the proof of Theorem 3.2. 

Lemma 3.4. Let M =(Q,Z,S, Q,, QF) b e an NFA with n states. It is decidable in 
worst-case time O(n6. #C) (on a RAM without multiplications and divisions using the 

uniform cost criterion) whether or not M complies with (IDA). 

Proof. For background information on RAMS we refer to [lS] and [l]. We present 

an informal algorithm deciding whether or not M complies with (IDA). Note that this 

algorithm uses well-known graph algorithms (see [l]) as subroutines: 

Step 1: Remove all useless states from M. Let w.1.o.g. M be trim. 

Step 2: Construct E; and Gq. 

Step 3: Compute the strong components of Gq. 

Step 4: Decide whether or not M complies with (IDA)‘, i.e. check whether or not 

there is a strong component U of G4 so that U2 n E; #fl. 

It can be easily seen that the above algorithm has worst-case time complexity 

O(n6. #C). 0 

We add that a variant of the algorithm presented in the above proof can be 

implemented on a nondeterministic logarithmically space-bounded Turing machine 

(see, e.g. [6]). Thus, the problem “decide whether or not an NFA is infinitely 

ambiguous” belongs to NSPACE(log, n) and, hence, also to NC. 
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4. The degree of growth of the ambiguity 

Let M = (Q, Z, 6, Q,, QF) be an NFA. The degree of growth of the ambiguity of 

M (deg(M)) is defined as the minimal degree of a polynomial hEN,[X] such that for 

all XEC* da,(x) is at most h( Ix 1) if such a polynomial exists, or is infinite otherwise. If 

deg(M) is finite (infinite), then M is called polynomially ambiguous (exponentially 

ambiguous). By definition, deg(M)=O iff da(M)< a3, and deg(M)> 1 iff da(M)= co. 

Thus, the degree of growth of the ambiguity allows to distinguish infinitely ambiguous 

NFAs. 

The following criterion (EDA) characterizes the property “M is exponentially 

ambiguous”: 

(EDA): There is a useful state ~EQ such that, for some word UEC*, daM(q,u,q)>2 

(see Fig. 8). 

Let dE N. The following criterion ( IDAd) characterizes the property “deg(M) 3 d”: 

(IDAd): There are useful states rl,sl, . . . . r,,sd~Q and words vi, uZ,uZ, . . . . ud, ud~C* 

such that for all 3.= 1, . . . . d r1 and So are distinct and 

(ri, Ulrrl), (rA, II~, si), (sl, Us, S&S and for all /?=2, . . . . d (So_ i, uA-, rn)e6 (see 

Fig. 9). 

Fig. 8 

"d "d 

ud 

Fig. 9 
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Note: (IDAi) equals the criterion (IDA) introduced in Section 3. Let DEN. If 

M complies with ( IDAd), then it also complies with (IDA,), . . , ( IDAd _ 1 ). If, more- 

over, for some AE[~], rl is connected with sI, where rl, sngQ are selected according to 

(IDAd), then M complies with (EDA). 

In Section 3 we have shown that deg(M)> 1 if and only if M complies with (IDAl). 

In this section we show the following theorems. 

Theorem 4.1. (Reutenauer [16], Ibarra and Ravikumar [7]). Let M be an NFA with 

n states. The assertions (i)-(iii) are equivalent. 

(i) M is exponentially ambiguous. 

(ii) deg(M) 3 n. 
(iii) M complies with (EDA). 

Theorem 4.2. Let M be an NFA, and let dE N. The assertions (i) and (ii) are equivalent. 

(i) deg(M) 3 d. 

(ii) M complies with (IDA,). 

Note: Our proof of Theorem 4.1 is mostly different from those in [16] and [7]. 

Theorem 4.2 is a generalization of Theorem 3.1. 

Let M = (Q, C, 6, Q,, QF) be an NFA with n states. We want to decide whether or not 

M complies with (EDA). For this we define the directed graph G2 =(Q’, E2): 

Let M be trim. Then, (EDA) is equivalent to (EDA)‘: 

(EDA)‘: There is a strong component of G2 which contains vertices ( plrp2) and 

(qi,qz) so that p1 =PZ and q1 242. 

Thus, using a straightforward algorithm (cf. Lemma 3.4), the following result can be 

easily established: 

(5) It is decidable in time O(n4. #C) whether or not M complies with (EDA). 

Theorem 4.1 and assertion (5) imply the following theorem. 

Theorem 4.3. Let M be an NFA with n states and input alphabet C. It is decidable in 

time O(n4. #C) whether or not M is exponentially ambiguous. 

Let M =(Q, C, 6, Q,, QF) be an NFA with n states. We want to compute deg(M). 

Theorem 4.2 implies that 

(6) deg(M)= sup( (0) u {dEN 1 M complies with (IDA,)}). 
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By topological sort we can find an order Q1,. . , Q,, of the strong components of 

M so that for all i,jE[k] the following holds: 

6nQixC*xQj#g*i<j. 

Using the notation introduced in Section 3, we define the directed graph G5 = ( Vs, ES) 

and the set RrE,: 

V,:={Ql, . . ..Qk}. 

R:={(Qi,Q.i)E VS x V, 1 there is a strong component U of G4 so that 

U’nEhZ$ and Un((P,P,q)EQ31PZq,PEQi,qEQj}f~}, 

E,:=Ru{(Qi, Qj)E v, X v,I6nQiXC*XQj#er}. 

Let i,jE[k]. It is easy to verify that (Qi, Qj)ER if and only if there are distinct states 

pEQi and qEQj such that for some word VEC* (p, v,p), (p, v, q),(q, v, q)Efi. In particu- 

lar, if (Qi,Qj)EES, then i<j. 

Let M be trim. Then, we know for all de N that M complies with (IDA,) if and only 

if there is a path in G5 which contains d edges of R. Hence, we conclude from (6) that 

either Rn{(Qi,Qi)li~[k]}#$, which implies that deg(M)=co, or deg(M) is the 

maximal number of edges of R on any path in G5. Thus, using a straightforward 

algorithm (cf. Lemma 3.4), the following result can be easily established. 

Theorem 4.4. Let M be an NFA with n states and input alphabet 1. Then, deg(M) is 

computable in time 0(n6. # 1). 

Note that Theorem 4.4 generalizes Theorem 3.2. 

In the rest of this section we consider an NFA M =(Q,,Y,&Q,,QF). In order to 

prove Theorem 4.1 we need the following lemma. 

Lemma 4.5. Let M be a chain NFA with k strong components which does not comply 

with (EDA). Then, deg(M) < k - 1. 

Proof. Let Qi ,..., QksQ and (pl ,..., pk),(ql ,..., qk)EQ1 x ... x Qk be given in corre- 

spondence with the definition of a chain NFA. Let w.1.o.g. L(M) # 9. Then, M is trim, 

and Q, = { p1 }, QF = (qk}. We show by induction on k that 

(*) VxsC* daM(x)<Ixlk-l 

From ( * ) it follows that deg( M) d k - 1. 

Proof of (*). Base of induction: k= 1. Select ueZ* so that (ql, o,p,)~S. Assume that, 

for some XEZ*, da&x)=da,(p,,x,q1)>2. Then, daM(q1,vx,q,)>,2. Hence, since 

q1 is useful, M complies with (EDA). (Contradiction!) 
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Induction step: Let k32. We (uniquely) divide M into the NFAs 

M1=(Ql,c,sl,{P1),(41)) and M2=(U:=2Qi,C,~*,{p2},{qk}) so that 6=61u 
b2 u(6 n {ql } x C x {p,}). Ml and M2 are chain NFAs which do not comply with 

(EDA). Moreover, L(Mi)#@ (i= 1,2). Let x=x1 . ..x.EL(M) (x1, . . ..x.,,EC). We ob- 

serve that 

da,(x)< t daM1(xr...xj_i).daMZ(xj+i...x,). 
j=l 

From this follows with the induction hypothesis that 

daM(x)d f Ixj+~...x,lk-2~,.IxIk-2=lxlk-1. 
j= 1 

Hence, we know for all xeC* that daM(x)dlxlk-‘. 0 

Proof of Theorem 4.1. Let M be an NFA with n states. 

(i) * (ii): trivial. 

(ii) *(iii): Let deg(M)>n. According to Lemma 2.3, there is a chain NFA M’S M 

(having k’ strong components) such that deg(M’) > n. Since deg(M’) 2 n B k’, Lemma 

4.5 implies that M’ complies with (EDA). Therefore, M complies with (EDA), too. 

(iii) a(i): Let M comply with (EDA). Let qEQ and OEC* be selected according to 

that criterion. Then, U, weC* exist so that for all isNO da,(uu’w)>da,(q,u’,q)>2’. 

Assume that deg(M) is finite. Then, there is a polynomial he N, [X] such that for all 

iE NO the following holds: 2’< da, (uu’w) 6 h( 1 uw I + 1111. i). (Contradiction!) Hence, 

M is exponentially ambiguous. 0 

In order to prove Theorem 4.2 we need the following lemma. 

Lemma 4.6. Let M be a chain NFA which does not comply with (EDA). Let dE N so that 
deg( M) 3 d. Then, M complies with ( IDAB). 

Proof. Let Q1, . . . . QkC Q and ( pl,. . . ,pk), (41, . . . . qk)EQ1 x ... x Qk be given in corre- 

spondence with the definition of a chain NFA. Since deg(M)> 1, we know that M is 

trim and Q,= { p1 >, QF= {qk}. We prove the lemma by induction on k. 

Base of induction: k= 1. From Lemma 4.5 (for k= 1) follows that deg(M)=O. 

Induction step: Let k >, 2. For each Ae[k] we construct the NFA 

MJ.=(~:== Qi,C,~~>{P1)Jqn)): 

a,:=~n( ~ QiXZxQiua(J1 14iJXIXjpi+l}). 
i=l i=l 

From Lemma 4.5 (for k= 1) follows that deg(M,)=O. Since deg(M,)=deg(M)> 1, 

there is an 1E[k-1] such that deg(M,)=O and deg(Ml+,)Z1. According to 
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Theorem 3.1, MI+ 1 complies with (IDA,). Thus, if d = 1, the lemma is already proved 

(since M also complies with (IDA,)). Therefore, let d 32. 

Let M’=( uf=!+ 1 Qi, C, 6’, { pl+ 1}, {qk} ) be the uniquely determined NFA so that 

6=61u6’u(6n{ql}xCx{p,+,}). M ’ is a chain NFA which does not comply with 

(EDA). Assume that deg( M’) < d - 2. Then, there is a polynomial h’~ N, [ X] of degree 

d-2 such that for all xgC* da,,(x) is at most h’(lxl). Let x=x,...x,~L(M) 

(x1, . . . , x,EC). We observe that 

daM(x)d t daMI(xl...xj-i).da,+r,(xj+,...x,) 
j= 1 

d f da(Mt).h’(lxj+l . ..x.I)<da(M,)~IxI~h’(lxI). 
j= 1 

This implies that deg( M) < d - 1. (Contradiction!) Hence, deg (M’) 3 d - 1. From the 

induction hypothesis it follows that M’ complies with (IDA,_ 1). Hence, since 

Ml + 1 complies with (IDA, ), M complies with (IDA,). 0 

Proof of Theorem 4.2. Let M be an NFA, and let de N. 

(i) =s. (ii): Let deg(M) bd. 

Case 1: M complies with (EDA). 

Let qeQ and USC* be selected according to (EDA). Then, distinct states r,s~Q and 

words YI,YZEC* exist so that v=yly2, (qryl,4(q,y1,W, and (r,y2,q),(s,yz,qkb 
(see Fig. 10). This implies that {r, s} x { y,y, } x {r, s} G 6. Thus, defining rA := r, sA :=s, 

vk:=yzyl (I.= 1, . . . . d) and ui:=y2y, (A=2, . . . . d), M complies with (IDAd). 

Case 2: M does not comply with (EDA). 

Fig. 10 
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According to Lemma 2.3, there is a chain NFA M’ c M such that deg(M’)>d. 

Obviously, M’ does not comply with (EDA). Lemma 4.6 implies that M’ complies with 

(IDAd). Hence, M complies with (IDAd), too. 

(ii) =z= (i): Let M comply with (IDAB). Let rl,sl, . . . . r,,s,,EQ and 

u1,u2,v2, . . . . &,,&,EC* be selected according to that criterion. Then, ul, WEC* 

exist so that for all HEN da,(n”,=,(~~v:).w)~da,(r,,v’, n”,=2(un&),sd)>jd. 

Assume that deg(M) < d - 1. Then, there is a polynomial /ZEN, [X] of degree 

d-l such that for all ~EPV the following holds: id~da,(nd,=,(u,v:).w)d 

k(Cd,_l(lulI+IvlI.i)+lwI). (Contradiction!) Hence, deg(M)>d. 0 

5. The maximal finite degree of ambiguity 

Let @ be a class of NFAs, and let ~EPV. We define 

da(@,n):=sup(N,n{da(M)IME@,M has n states}). 

According to Theorem 2.1, da(@, n) is at most 5”“. n”. Thus, da(@, n) denotes the 

maximal finite degree of ambiguity of an NFA in @ with n states. In this section we 

deal with the following problem. Given a class Q, of NFAs and neN, determine 

da(@,n) or find out lower and upper bounds. 

We consider the following classes of NFAs: the class Q0 of all NFAs, the class @is of 

all NFAs with one input symbol, the class @ FL of all NFAs recognizing a finite 

language, the class Qc of all chain NFAs, the class Qc2 of all chain NFAs having 

2 strong components, the class Qcu of all chain NFAs M having only unitary strong 

components (i.e. “y” is the equality relation), and the class Gcu,d of all NFAs in 

Qcu with at most d input symbols (d = 2,3,4,5). 

Our results are summarized in the following theorem. 

Theorem 5.1. Let @ be a class of NFAs, and let nEN. Then, lower and upper bounds for 
da(@, n) hold true as indicated in Table 1. 

Note that in Lines l-4 of Table 1 da(@, n) is of order 2@(“) while in Lines 5-10 

da(@, n) is of order at least 2R(n) and at most 2’(“‘iogzn). In the light of the latter group of 

results we want to formulate the following question: Where is da(QO, n) situated in the 

range between 2@(“’ and 2°(““og2n)? By Lemma 2.3 we know that da(@c,n)d 

da(QO, n)< 5ni2. da(@c,n). Thus, it seems reasonable to consider the above question 

for Qc rather than for QO. But, even for @ ,--, 3 we do not know the answer. Neverthe- 

less, we conjecture that da(@c, n) (and, hence, also da(QO, n)) is of order 2@(“). 

Proof of Theorem 5.1 (summary). 

Line 1: [20, Theorem 5.11. 

Line 2: [20, Theorem 5.21. 

Line 3: Lemma 5.2 and assertion (*) in the proof of Lemma 2.5 (for k=2). 
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Table 1 

Line Class @ Lower bound Upper bound 

1 ~ls = NFAs with 

one input symbol 2”VI 

2 QpL = NFAs recognizing 

a finite language ( L 

n 

(n+l)P 

3 a,, =chain NFAs having if n > 2: 

2 strong components 2”-2 

J > 

4 @ cu. Z =NFAs in @c,, with ifn=lmod6: 

at most 2 input symbols 20.5283,“- I) 21 5284.0-I) 

5 @c,,,=NFAs in Gc,, with 

at most 3 input symbols 2”_ 1 n’ 

6 Q, c,,,=NFAs in @cu with ifn=lmod3: 
at most 4 input symbols 2n+log*n-4.5sW nn 

7 @ cu.5 = NFAs in @cu with if n=Omod64: 

at most 5 input symbols 21.022’ n n” 

8 Qcu =chain NFAs having only if n=Omod64: 
unitary strong components 21.0221.” nn 

9 @c = chain NFAs if n=Omod64: 
21.022I~n n” 

10 Q0 = all NFAs if n=Omod64: 
21.0221.” 21.1610’“,n” 

Line 4: Lemmas 5.6 and 5.7. 

Line 5: [20, Lemma 5.51 and Lemma 2.5. 

Line 6: [20, Lemma 5.61 and Lemma 2.5. 

Line 7: [20, Lemma 5.73 and Lemma 2.5. 

Lines 8-9: Line 7 and Lemma 2.5. 

Line 10: Line 7 and Theorem 2.1. 0 

The next lemma proves the lower bound in Line 3 of Table 1. 

Lemma 5.2. For all n,, n2 EN there is a trim NFA M := M,,, ,,z~@CZ with n, + nz states 

and itI + n2 + 2 input symbols such that the following assertions are true: 

(i) The two strong components of M have n, and n, states, respectively. 

(ii) 2”1+“2-2~da(M,,,.,)<oo. 
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Proof. Let n,, ~,EN. We construct M := M,,, n2 =(Q, C, 6, Q,, QF): 

Q:=QlfiQz, QI:=~I,...A), Qz:={q1,...,qn2}, Q,:={P.,}, QF:={qn2}, 

C:={i~Z~-(n2-l)dibn,-lji,{a,,a2,a,}, 

6:= u 6(a), 
aeT 

where 

l 6(i):={(pj,i,pj)li+26jdn,}u{P,+,} X {i} X {p1,...,pi)U{(qj,i,qj)Il~jdnz} 

(iECnl - ll), 

l 6(0)~=~(Pj~o~Pj)l2~j~n~}~{(~~~O~~~)j~{(~j~0~~j)Ildjd~2), 

l s(-i):=(PI}x IwiJx (41,P1,...,Pnl}“{41,...,4i} x {-i} x {qi+l} 

U{(qj, -i,qj)li+2djdnz} (iE[n2-ll), 

. W4:={~.,j x @I) XQI, 6(az):=Q2x(u2)x(q,,), ~(u3):=((qn2,a3,41)). 

(See Fig. 11 for the definition of 6 in the case ni = 5 and n2 =4.) 

M is a trim chain NFA having the strong components Qi and Q2. Thus, it also 

meets the assertion (i). M is planned to recognize a suitable input word by “counting” 

through almost all sets of its states. 

Claim 5.3. M is finitely ambiguous. 

Assume that da(M) is infinite. Then, by Theorem 3.1, M complies with (IDA). By 

inspection of M, we observe that for all (p’, x, q’)EQi x C* x Qi, da,(p’, x, q’) is at most 

1 (i= 1,2). Therefore, according to (IDA), p~Qi, qEQ2 and EC* exist such that 

(p,u,p),(p,u,q),(q,v,q)d. From this follows that q=ql and v~{O,...,n,-l}*. This 

implies that (p, u, p)$6 or (p, u, q)$d. (Contradiction!) 

Definition of 6 (nl=5, ~=a): 

P5 

P4 

P3 

PZ 

Pl F 

91 

cl2 

q3 

q4 

1 - - - - - - - 

4 3 2 

- 
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- 

- 

- 

1 0 

-- 

-- 

-- 

s 
-- 

-4 

-- 

-1 

t 

4 - 

- - 

-2 -3 

Fig. 11 
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GM(y) (n,=4, nz=3): 

345 

P4 

P3 

P2 

Pl 

91 

q2 

% 

Fig. 12 

Claim 5.4. da(M)>2”‘+“‘-2. 

We construct the words yr’:=s, yi”:=yi!, Oiyi’_‘,(i= 1, . . ..n. - l), yf’:=y!,t)_i, 

yi’):=~j2_‘~( - i)yi2’i (i= 1, . . . . n2 - l), and y:= a,~!,:)_ 1 0a2. Counting selected accept- 

ing paths for y in M it is easy to show that daM(y) 2 2”1+“-~ (see Fig. 12 for the graph 

G,(y) in the case n, = 4 and ti2 = 3). 

From Claims 5.3 and 5.4 it follows that M meets the assertion (ii). 0 

We add to the proof of Lemma 5.2 that the NFA M,, , nz turns out to be quite useful 

in order to construct finite-valued finite transducers [20, Chapter 12; 21, Section 43 

and finite monoids of matrices with entries in No [23, Section 2). 

Let M =(Q, C,6, Q,, QF) be a trim NFA in @cu with n states. According to the 

definition of @cu, there is an order ql, . , qn of the states of M such that Q, = {ql }, 

Qp-={qn} and S&IJr=r {qi} XCX (qi}uur=: {qi} XCX {qi+l}. Thus, the criterion 

(IDA) introduced in Section 3 reads for M as follows: 

(CU-IDA): 31 di<jdn 3Ui, ...) aj_,ECVK=i,...,j-1: 

(qi,a,9qi)Efi & (qK>aK>C7K+1)Ea & (qj*%c,qjJEb. 

Together with Theorem 3.1, this implies Lemma 5.5. 

Lemma 5.5. Let M be a trim NFA in Qcu as above. M is jinitely ambiguous if and only 

if the following assertion is true: 

(CU-FDA): Vl di-cjdn Cli<K=K(i,j)<j V’acC: 

(4i9a3qi)E6 & (4j,a,qj)EB~(q,,u,qK+1)~~. 

Using Lemma 5.5 we are able to establish the bounds in Line 4 of Table 1 with 

Lemmas 5.6 and 5.7. 
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Lemma 5.6. For each n = 1 mod 6 there is a trim NFA M,E@,-~, 2 with n states such 
that 2°~5283’(n-‘)<3(“-1)‘3~da(M,)<~. 

Proof. Let n = 1 mod 6. We construct M, = (Q, C, 6, Q,, QF): 

Q:={ql, . . . . a,), C:={L2}, Q,:=(ql}, QF:={qn}, 

S:={(q6i+l, l,qci+,)lOGid(~- 1)/6} 

U{(qi,l,qi+r)(l <i,<n-I, iZ3mod6) 

u{(q6i+3,2,qsi+3)lO~id(n-7)/6} 

U{(qi,2,qi+,)ll didn- 1, i#O mod6). 

We define for all 1~ i <j < n, 

i+2 if i,j=lmod6, 

rc(i,j):= i+3 if i,j=3mod6, 

i otherwise. 

Using this definition it can be easily checked that M, is a trim NFA in @cu,2 which 

complies with (CU-FDA). Consider y := (1 225 1 3)(n- ‘1’6~C *. Counting selected accept- 

ing paths for y in M, it is easy to show that daMn(y)>9’“- lv6 (see Fig. 13). In 

conclusion, we know by Lemma 5.5 that 

3’“-‘“3<da,n(y)dda(M,)<co. 0 

Definition of 6 and GM,(~) (n= 13): 

Fig. 13 
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Lemma 5.7. Let M be a finitely ambiguous NFA in QcU, 2 with n states. Then, the 

degree of ambiguity of M is at most 2”- ’ .3’“- “j3. 

Proof. We assume that M = (Q, Z, 6, Q,, QF) is trim and corresponds with the notation 

used in Lemma 5.5. Thus, there is an order ql, . . . , qn of the states of M such 

that QI={ql), QF={qnj and ~~~~=,{qi}xC~{qi}u~~~~~qt}~C~{qt+~}. Let 

,X=(1,2}. 

For each a=(al, . . ..a._,)EZ”-’ 

M’“‘=(Q, Z, fi@), Q,, QF)s M: 

we construct the NFA 

d’a”=an( rj (qi}xZx{qi}“n~l((qi,Ui,qi+~~~). 
i=l i=l 

Note that (ql,al,q2),...,(qn-l, a,_ 1, q,,) are the only possible bridges of MC”‘. We 

observe for all XEC* that 

da,(x) = c da,ca(x). 
nGZ”- ’ 

This implies that 

da(M)< c da(M@)< co. 
asP_ ’ 

Therefore, the lemma follows from assertion (*). 

(*) Let M be an NFA as above. Let a,, . . . . a,_,EC so that (ql,al,q2), . . . . 

(qn_ 1, a,, 1, q.) are the only bridges of M. Then, da(M) is at most 3’“- 1)‘3. 

We prove (*) by induction on n. If n = 1, then M is unambiguous, i.e. da(M)= 1. 

Let n> 1. By Lemma 5.5, M complies with (CU-FDA). Assume that 

(q1)x~x(ql)ujq,}xCx~q,}E~. Th en, taking ~:=ti(l, n)E[n- l] as in (CU- 

FDA), we observe that 6n {qK} x C x (qK+ 1} =pi. (Contradiction!) We can w.1.o.g. 

assume that (q1,2,ql)$6, (ql,l,ql)E6, and that ar=l. Define I:=max{2<i<nIaI = 
. . . =a~_~=1).Thus,a~=~~~=a~_~=1andeitherI=nora~=2.Since(q~,1,ql)~6and 

M complies with (CU-FDA), we observe for all i = 2, . . . ,I that (qi, 1, qi)$6 (see Fig. 14). 

Let XEC*. Let teN, and y~{e}u{2}~C* so that x=l’y. From the induction 

hypothesis it follows that 

daM(x)= i daM(q,, l’,qi).da,+.r(qi,y,q,)< i 3(“-(1-1)-1)‘3 
i=Z i=Z 

Note that j~3j’~ (HEN). Thus, da(M) is at most 3(n-1)‘3. 
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1=3andn=9 

Fig. 14 

Let us remark that for each n = 1 mod4 there is an NFA M, as in (*) such that 

2’“-‘)‘4<da(M,)<co. MS is presented in Fig. 14. In fact, 4<da,,( yyR) d 

da(M9)<co, where y:=112122. 0 
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