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Abstract
Weber, A. and H. Seidl, On the degree of ambiguity of finite automata, Theoretical Computer
Science 88 (1991) 325-349.

We investigate the ambiguity behavior of finite automata in connection with their inner structure.
We show that the degree of ambiguity of a finitely ambiguous nondeterministic finite automaton
(NFA) with n states is at most 5"2-n", There is a simple criterion which characterizes the infinite
degree of ambiguity of an NFA, and which is decidable in polynomial time. The degree of growth of
the ambiguity of an NFA is computable in polynomial time. Starting from the first result, we discuss
the maximal finite degree of ambiguity of an NFA with » states, and we present subclasses of NFAs
where this quantity is of order 28,

0. Introduction

The degree of ambiguity is a structural parameter of a finite automaton. Let x be an
input word of a nondeterministic finite automaton (NFA) M. The degree of ambiguity
of x in M (da,(x)) is defined as the number of all accepting paths for x. The degree of
ambiguity of M is the maximal degree of ambiguity of an input word of M or is
infinite, depending on whether or not a maximum exists. In the former (latter) case
M is called finitely (infinitely) ambiguous. The degree of growth of the ambiguity of
M is defined as the minimal degree of a polynomial h over N, (Ny denotes the
semiring of all nonnegative integers) such that for each input word x of M da,,(x) is at
most h(|x|) if such a polynomial exists, or is infinite otherwise. In the latter case M is
called exponentially ambiguous. We will abbreviate the degree of growth of the
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ambiguity of M by “degree of M” and ask the reader not to mix up this notion with
the “degree of ambiguity”.

Only recently, the degree of ambiguity received attention in connection with the
equivalence problems for NFAs and finite tree automata, and with the succinctness of
representation of regular languages. For the latter we refer to [19] and [8]. For the
former we mention that the equivalence problem is PSPACE-complete for NFAs (see
(4]) and DEXPTIME-complete (w.r.t. log-space reductions) for finite tree automata
[17]. For any fixed integrer k, however, the equivalence of NFAs with degree of
ambiguity at most k can be tested in polynomial time [19, 11]. The same assertion
holds true even for finite tree automata [17].

The following fundamental result was proved independently by Mandel and Simon
[13], Jacob [9] and Reutenauer [16]: It is decidable whether or not an NFA is finitely
ambiguous. In fact, the aim of the three mentioned papers was to show: (a) It is
decidable whether or not a finitely generated monoid of matrices with entries in N (or
in a larger semiring) is finite [13, 9. (b) There is an algorithm which computes the
degree of an NFA [16]. Moreover, from this work the following upper bounds can be
derived. The degree of ambiguity of a finitely ambiguous NFA with n states and input
alphabet X is at most

e 27 [13],
o n/ ™ #5 where f is a recursive function [9],
® 2"-n?- 24" [16].

The following results arose independently of [13, 9, 16]. Given any fixed integer k, it
can be tested in polynomial time whether or not the degree of ambiguity of an NFA is
greater than k (Stearns and Hunt IIT [19], see also [24]). Applying a nice matrix
algorithm, it can be decided in polynomial space whether or not an NFA is finitely
ambiguous (Chan and Ibarra [3]). The problem “decide on input of an NFA M and of
ieNy whether or not the degree of ambiguity of M is greater than i” is PSPACE-
complete [3].

In this paper we clearly follow the contents of [22] and of the first five chapters in
[20]. Our main results are:

(1) The degree of ambiguity of a finitely ambiguous NFA with »n states is at most
572 . pn" (see Section 2).

(2) There is a simple criterion (IDA) which characterizes the infinite degree of
ambiguity of an NFA, and which is decidable in polynomial time (see Section 3).

Generalizing (2), we obtain a polynomial-time algorithm which computes the
degree of an NFA (see Section 4). In fact, this algorithm is based on the criteria (EDA)
and (IDA,) which characterize the properties “M is exponentially ambiguous” and
“the degree of M is at least d”, respectively, of an NFA M (deNy).

In Section 5 we discuss, starting from (1), the maximal finite degree of ambiguity of
an NFA with n states. We present subclasses of NFAs restricted to which this quantity
is a function of order 29,
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By reduction, (1) and (2) can be generalized to NFAs with ¢-moves [20, Chapter 6].
Moreover, all our results can be automatically transformed into assertions on finitely
generated monoids of matrices with entries in N, (see [20, Chapter 7] and [11, 23]). In
order to prove (1) and (2) we introduce new elementary methods. First of all, we show
that it is sufficient to consider chain NFAs, which have a restricted structure. Then, for
every input word x we investigate a graph which describes all accepting paths for x in
the NFA, and we use “pumping arguments” in these graphs. The criterion (IDA)
describes a simple reason for an NFA to be infinitely ambiguous. In fact, we show that
this is the only reason.

From another point of view, our proof of the characterization part of (2) reads as
follows. At first, reduce the result to the case that the NFA in question has only one
input symbol, and then verify the correctness in that easy particular case (see also [20,
Theorem 5.1]). As pointed out by the referee, this basic frame was already used in the
above-mentioned paper by Mandel and Simon [13]. Indeed, from [13] a proof of the
correctness of the criterion (IDA) can be easily derived. In order to carry out
the reduction to the case of one input symbol, [13] offers to use a theorem by
McNaughton and Zalcstein [14] restricted to the nonnegative integers and also
contains a combinatorial proof of that restricted form of the theorem. Our methods
contribute a short combinatorial proof of the above reduction and, thus, a new
correctness proof of the new criterion (IDA).

Independently of us, Ibarra and Ravikumar [7] exhibited a criterion which is
equivalent to (IDA), and which can be tested in double exponential time. The
above-mentioned criterion (EDA) was already used in [16, 7].

Only recently, the results and techniques presented in this paper turned out to be
stimulating for further research on finite automata. Using an estimate of Baron [2],
the upper bound in (1) can be improved to 2! **2'*- 4" where k, <0.7956 (note that
5"2=2%" where k, ~ 1.1610). In [11] this improvement and some of our results and
proofs are presented in the context of the theory of formal power series. A new
topological approach exhibited by Leung [12] yields an alternative proof of the
characterization part of (2). In [23] the authors present a “nonramification” lemma for
NFAs and apply it to finitely generated monoids of matrices with entries in Ng. In
fact, this lemma allows to shorten an input word of a finitely ambiguous NFA without
changing its ambiguity behavior. Extending these ideas and the techniques presented
in this paper the second author generalizes (1) and (2) to finite tree automata [18].

1. Definitions and notations

A nondeterministic finite automaton (NFA) is a 5-tuple M =(0, X, 6, 0;, Or) where
Q and X denote nonempty, finite sets of states and input symbols, respectively,
01, @r = Q denote sets of initial and final (or accepting) states, respectively, and § is
a subset of Q x ¥ x Q. X is called the input alphabet of M, § is called the transition
relation of M. Each element of § denotes a transition of M.
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The mode of operation of M is described by paths. A path = (of length m) for x in
M leading from p to g is a word (qq,X()}-(Gm>Xm)qm+1€(Q@ x Z)"*-Q so that
(@1,%1,92)s > (Gs Xm> G+ 1) are transitions of M and the equalities x=x,...x,,,p=¢;
and ¢ =g,,+ hold. 7 is said to consume x. 7 is called accepting if peQ, and qeQg. The
language recognized by M, denoted by L(M), is the set of words consumed by all
accepting paths in M.

For each (p, x, q)e@ x X * x Q day(p, x, q) is defined as the number of all paths for
x in M leading from p to q. We define 5:={(p, X, )eQ x X * x Q|day(p, x, q)#0}.
Note that 5=50Q x X x Q. We rename 5 by 6.

The degree of ambiguity of xe Z* in M (da,,(x)) is the number of all accepting paths
for x in M, ie. day(x)=% ,co ¥ ,e0, danm(p; x, q). The degree of ambiguity of
M (da(M)) is the supremum of the set {da,(x)|xeXZ*}. Clearly, for all xe Z*, da(x) is
at most ( # Q)'*!*1. M is called infinitely ambiguous ( finitely ambiguous, unambiguous),
if da(M )= oco(< o0, <1).

A state of M is called useful if it appears on some accepting path in M; otherwise,
this state is called useless. Useless states are irrelevant to the degree of ambiguity in M.
If all states of M are useful, then M is called trim.

A state peQ is said to be connected with a state geQ (p ¥4 q) if some paths in M lead
from p to g and from g to p. An equivalence class w.r.t. the relation V is called
strong component of M. A transition (p,a, q) of M is called a bridge if p is not
connected with g.

M is said to be a chain NF A if, for some order Q4, ..., Q, of the strong components
of M, (p1,--» i) (G1s...,qx)€Q X -+ X Q) exist such that, in M, p; (gi) is the only
possible initial (final) state and every bridge is of the form (g;, a, p; +), where ie[k—1]
([m] denotes the set {1, ...,m}) and aeX (see Fig. 1). Let M be a chain NFA such that
L(M)#@. Then, M is trim, and Q;={p, }, Qr={qi}.

Let x=X; ... xp€X *(xy, ..., Xu€2). The graph of accepting paths for x in M (G p(x))
is the directed graph ( V, E), where

o V={(q./))eQ x {0, ...,m}|3q1€Q, Iqr€QF: (1, X1 ... X, g)ED
& (g, Xj41.. - Xm, r )ED |,
o E :{((p’.]_l), (qvj))e V2|]E[m] &(pa Xjs q)65}
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Note: The number of all paths in G,(x) leading from Q, x {0} to Qg x {m} equals the
degree of ambiguity of x in M. Each vertex of G(x) is situated on such a path.

Let M=(Q, 2,5, 0, Qp)and M'=(Q', Z', &', Q1, Q) be two NFAs. M’ is included in
M (M’ = M) if inclusion holds in each component.

2. An upper bound for the finite degree of ambiguity

Let M be a finitely ambiguous NFA with n states. In this section we show the
following:

(1) There are chain NFAs M,,....MycM such that N<5Y? and
da(M)<Y Y da(M;)< 0.

(2) If M is a chain NFA, then da(M)<n".

From (1) and (2) follows Theorem 2.1.

Theorem 2.1. Let M be a finitely ambiguous NFA with n states. Then, the degree of
ambiguity of M is at most 5% n".

Using an estimate of Baron [2] the upper bound in Theorem 2.1 can be improved to
21Hkemgn where k, <0.7956 (note that 572 =2%"" where k, :=(log, 5)/2~1.1610). In
Section 5 we state that each further improvement of this upper bound has to stop at
21.0221'm (see Theorem 5.1). By reduction, Theorem 2.1 can be generalized to NFAs
with e-moves [20, Theorem 6.1]. Moreover, it can be applied to finitely generated
monoids of matrices with entries in Ng ([20, Theorems 7.1 and 7.3]; see [23,
Appendix]).

Given an NFA M and an integer i, it is decidable in polynomial space whether or
not da(M) is greater than i [3]. Thus, Theorem 2.1 implies that the degree of
ambiguity of an NFA can be computed in polynomial space.

Our first lemma will show (1). In order to prove this lemma we need the following
proposition.

Proposition 2.2. Let n=Y}_, n, where ny,...,m,eNo. Then, [[_, (n? +1)<5"2.

Proof. It is easy to show by induction on j that for each jeN, (j>+1)><5’. In turn,
this implies that [T5_, (i? + )<, 5%/2=5"2 O

Lemma 2.3. Let M be an NFA with n states and input alphabet Z. There are chain
NFAs My, ..., My= M such that N <5"? and the following assertions are true:
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™M=

(i) VxeXZ*: day(x)= da,g, (x).

i=1

N
(i) da(M)< oo =da(M)< ) da(M;)<cc.
i=1

(i) da(M)=o0 = Jie[N]:da(M;)= c0.

Proof. Let M =(Q, X, 4, Q1, Or). Let @4, ..., O, be an order of the strong components
of M so that for all i, je[ k] the following holds:
SNQix ¥ x QAP =i<).

Let K be a nonempty subset of [k], let 1 <i; <i,<---<i;<k so that K={iy,...,i;},
and let p=(p;,,-...,0i,))» =i, .-, 4:;,)€QF = Q;, x --- x Q;,. We construct the NFA
M(p.q.K)=( Ul':l 0:,2, 5(1:.11‘10’ Q:qu)’ Q(Fp-q)):

il’sq):z le{ph}a Q(Fp‘q) = QFf'\{qi‘}s

1 -1
5“’””"’:=5m<U Qi xZxQ;u {qi}}xe{piAH}).
A=t i1

A

M® %K) i5 a chain NFA, which is included in M. For all xeX* we observe that

day(x)= ) Y dagen(x).
@=K<[k] p.geQ®

From Proposition 2.2 it follows that

%= 3 (Teer)-

$#£K<[k] p.qeQ™ (@1, ..c0)E]0, 13 Ni=1

k
=[] (#0)*+1)—1<5"2 -1 <52

i=1

This completes the proof of (i). The assertions (ii) and (iii) follow from (i). O

Note that in Lemma 2.3 we showed, compared to [22], a better result with a shorter
proof. The two next lemmas will demonstrate (2).

Fig. 2
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Lemma 24. Let M=(Q, X, 0, @\, Or) be a finitely ambiguous NFA. Let p, qeQ be
useful states so that p is connected with q. Then, for all xeZ*, day(p, x, q) is at most 1.

Proof. Assume that for some xeX* day(p, x, ¢)=2. Select veX* so that (g, v, p)ed.
Then, u, weX* exist such that for all ieNy day(u(vx)w)=day(q, (vx), g)=2" (see
Fig. 2). Thus, da(M)=oc0. (Contradiction!) [

Lemma 2.5. Let M be a finitely ambiguous chain NFA with n states. Then, the degree
of ambiguity of M is at most n".

Proof. Let M=(Q,2,3,0,,0¢). Let Qy,...,0, =0 and (p1,...,px)s (G1---»qu)E
0, x---xQ, be given in correspondence with the definition of a chain NFA. Let
w.lo.g. da(M)>0. Then, M is trim, and Q;={p;}, Qr=1{q:,}. We will show by
induction on k that

(*) da(M)gzn-f]ogzk17k+l.

First of all, we show that the lemma follows from (*). Define ¢, == [ log, n].

Case I ke{l,...,2°" 1}, Then, n- [logo k |—k+1<n-(to—1)<n-log, n.

Case 2: ke{2 ' +1,...,n}. Then, n- [logy k| —k+1<n-ty—2""1. Consider the
function f which maps vto v-log, v—(v-to—2°"1). f is continuous and differentiable
on the open interval (0, ov). We know that f'(v)=log,v+1/(log.2)—t,. f' is a mono-
tonously ascending function. Moreover, f'(2° !)>0and n>2""!. From this follows
with standard arguments that f(n)>f(2°"!)=0, i.e. n-to—2" "' <n log, n.

Proof of (%). Base of induction: k=1. p, is connected with g,. Thus, according to
Lemma 2.4, M is unambiguous, i.e. da(M)=1.

Induction step: Let k 22. Define | := [ k/2'|. We (uniquely) divide M into the NFAs
M, =( Uf':1 Qi, 2,01,{p1}, {ai}) and M,=( Uf=1+1 Qi Z,02,{Pr+1}» {qx}) so that
0=0,0d,u(0n{q}xZx{p+1}). M, and M, are finitely ambiguous chain NFAs
with n, :=Y!_| #0Q; and ny :=Y*_,, | #0; states, respectively, such that da(M,)>0
and da(M,)>0.

Let x=x,...x,eL(M) (xy,...,x,€X). Consider in the graph G (x)=(V, E) the set
D of all edges “leading from Q, to Q;.,”: D :={((g1.j—1), (p1+1,j))€E|je[m]}. Let
J<[m] so that D={((q;,j—1), (pi+1,j))| jeJ}. We observe (see Fig. 3) that

daM(x)= Z daMZ(XI...XJ_I)'daMZ(Xj+1 ...xm).
jedJ

From this follows with the induction hypothesis that

daM(X)S Z 2my [ogy [h/2 7= [k/2 7+ 1. ony- [ogy [ k2 J7— Lk/2 |+1

jed

<#J 2 [og,(k/2)1—k+2 — #J-on ]'logzk1~n7k+2.
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Gu(x):

Note that [log, [ k/2 7= [log,(k/2)7]. Therefore, in order to prove (), it is suffi-
cient to show that #D=# J<2" "L,

Assume that #J>2""'. Let jeJ. Define A;:={qeQ|(g,j)eV}. Clearly,
Pi+1€A;=Q. Since #J>2""1, ji,j,eJ exist such that j,<j, and A;=A;,.

Let us define A:=A; =A;,, u=x;...Xj,, V1 :=Xj,+1...Xj,-1, d1 :=Xj,, y:=y1 41, and

W:=Xj,+1...Xn. Then, we observe (see Fig. 3)
(91,01, pi+1)€0 & IpeA:(p.yy, q)€d,
VgeA:(pi,u,q)ed & ApeA:(p,y,q)€),
VpeA:(p,w,q)ed & FqeA:(p,y.q)€d.

Let teN. From the above expressions it follows that for all te[t]

(plauyt_lylvql)eé’ (‘1!,01,P1+1)55’ (Pt+1,yt_rW,‘1k)55-

This implies that da (uy'w)=dax(py,uy'w,q;)>t (see Fig. 3). Thus, da(M)= 0.
(Contradiction!)
We remark that using an estimate of Baron [2] the upper bound in (*) can be

slightly improved to 2#- [logak 1=2Tlek 11
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3. A criterion for the infinite degree of ambiguity

Let M=(Q,2,6,0Q,QF) be an NFA. We introduce the following criterion (IDA)
which characterizes the infinite degree of ambiguity of M:

(IDA): There are distinct useful states p,qeQ@ such that for some word
veZ* (p,v,p),(p,v,q),(q.v,q)€d (see Fig. 4).

Let M comply with (IDA), let p,qeQ and veX* be selected according to that
criterion. Then, u,weX* exist such that for all ieN da,(uv'w)=day(p,v',q)=i.
Thus, da(M)=c0. On the other hand, assume that M is infinitely ambiguous. Then,
according to Lemma 2.3, there is a chain NFA M’ = M which is infinitely ambiguous,
too. In Lemma 3.3 we will show the following:

(3) If M” is an infinitely ambiguous chain NFA, then it complies with (IDA).
According to (3), M’ complies with (IDA) and, hence, M complies with (IDA), too.

Therefore, we have shown that (3) implies Theorem 3.1.

Theorem 3.1. Let M be an NFA. M is infinitely ambiguous if and only if it complies
with (IDA).

Let M =(Q,Z,3,0:1,0r) be an NFA with n states. We sketch an algorithm which
decides in polynomial time whether or not M complies with (IDA):

e Remove all useless states from M. Let w.lo.g. M be trim.
e For all p,qeQ with p+#4g do the following:
— Construct an NFA M’ such that L(M')=L; L, L5, where

Ly={veX*|(p,v,p)ed},  Lr:={veX*|(p,v,q)ed},
Ly={veX*|(q,v,q)ed}.
— Decide whether or not L(M’) is empty.

In fact, the above algorithm requires time O(n®- # X). In Lemma 3.4 we will show the
following:

4) It is decidable in time O(n®- # X) whether or not M complies with (IDA).
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Theorem 3.1 and assertion (4) imply Theorem 3.2.

Theorem 3.2. Let M be an NFA with n states and input alphabet 2. It is decidable in
time O(n®- # X) whether or not M is infinitely ambiguous.

By reduction, Theorem 3.2 can be generalized to NFAs with e-moves [20, Theorem
6.2]. Moreover, it implies a polynomial-time algorithm deciding whether or not
a finitely generated monoid of matrices with entries in Ny, is finite ([20, Theorem 7.2];
see [23, Appendix]).

The following lemma shows (3) and, thus, completes the proof of Theorem 3.1.

Lemma 3.3. Let M be an infinitely ambiguous chain NFA. Then, M complies with
(IDA).

Proof. Let M =(0Q,2,6,0,,0r). Let Q,...,0:<=Q and (py,....P)(q1..... q)E
Q. x --- x @, be given in correspondence with the definition of a chain NFA. Since
da(M)= oo, we know that M is trim and Q,={p; },Qr={q}.

Case I Ap,v,.q)eEQ@xZ*xQ: p’«;;q’ & day(p,y,q9)=2.

Then, distinct states p,qeQ and words y,,y,,v;€Z* exist so that y=yy,,
(P y1,P: (P, y1,9)ED, (P, Y2,4'),(4,¥2,9')€d, and (¢, ys3,p')€d (see Fig. 5). Define
vi=Yy,¥3¥1, then {p,q} x {v} x {p,q} =8. Hence, since p and g are useful, M complies
with (IDA).

Case 2: V(p,y,q)el Ji_, Qix Z* x Q;: day(p, 3,4 )< 1.

Let x=x,...Xxp€L(M) (xy, ..., x,,€Z). Consider Gy(x)=(V, E). Let le[k—1] (note
that k >2). Define D,(x):= {((q;, j— 1), (P1+1.j))€E| je[m]}. D,(x) is the set of all edges
in Gy (x) “leading from Q, to Q,+,". According to Case 2 we know that

k-1
(#) day(x)< #(D1(x) x - x Dy (x))= [ #Dix).
=1
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Set n:=#Q. Since da(M)=o00, we may w.lo.g. assume that da,(x)>2¢" D&~
Because of (# ) we are able to choose le[k—1] so that #D,(x)>2""1.

The following construction is performed just like in the proof of Lemma 2.5. Let
J<[m]so that Dy(x)={((q;, j— 1),(pi+1, ) jeJ }. Let jeJ. Define A;:= {reQ|(r.j)eV}.
Clearly, p;, 1€ A;= Q. Since #Dy(x)>2""1,j,,j,€J exist such that j, <j,and 4; =A4,,.
Let us define 4:=A4; =A;,, y;:=xj+,...Xj,—1, a;:=X;,, and y:=y,a;. Then, we
observe that

(91,01, p1+1)€0 & IreA:(r,y1,q1)€9,
VseAdreA:(r,y,5)ed & VreAIse A:(r, y, s)ed.

We construct states r,eA(i=1) as follows. Choose ryeAd so that (ry,y;,q,)€9.
Choose r,eA so that (r;,y,r,—;)ed (i=2,3,...). There are i,, i»eN such that
Fiy =Fi, +i, = p (see Fig. 6). We construct states s;e 4 (i >0) as follows. Define sq:=p,, .
Choose s;eA4 so that (s;—1,y,s;)ed and for all je[i—1] s;—,=s;_, implies s;=s;
(i=1,2,...). There are i;eN, and i,eN such that s;,=s,.+;,=9¢q and
i1+i3=0mod i, i, (see Fig. 6). In conclusion, we have (see Fig. 7)

(P, ¥ p)€d, (P, ¥ " 'yi.q) (i ay, pis1) (Pre1. V2, q)€S, (g, ¥, q)ES.

Since ¢, is not connected with p;,;, p and g must be distinct. Let j,eN so that
iy +i3=jy iy i4, and define v:=y/* """ Then, (p,v, p),(p,v,9),(q, v, ). Hence, since
p and g are useful, M complies with (IDA). [J

We remark that, after some slight modifications, the above proof also works for
nonchain NFAs. Thus, Theorem 3.1 can be proved without using Lemma 2.3. Indeed,
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the counting mechanism of this lemma, although quite elementary, is much too fine
for our purpose here.

In order to show (4) we need some preliminaries. In a finite, directed graph
G =(V, E) we use the following notations: Let p,ge V. We write p s if some path in
G leads from p to gq. We write p <4q, if some paths in G lead from p to g and from g to p.

p<>q means that p is strongly connected with ¢q. An equivalence class w.r.t. the

relation “—” is called a strong component of G.
Let M=(Q,%,5,01,0r) be an NFA. We define the directed graphs G;=(Q3 E;)
and G4=(Q° E,):

Ey= {((Pl’l’z,l’s), (fh,‘hsfh))EQs X Q3|3052 Vi€{152,3}3 {pi,a, %)Eé},

E,:=EyUEj}, where E5:={((p.4.9)(p.p.q))IP,q€Q,p#q}.

Let M be trim. G5 allows to rewrite (IDA) as follows:

(*)  There are distinct states p,geQ such that (p,p,q) pg (p,a,9).
3

It is easy to verify that (=) is equivalent to (IDA).
(IDA): There is a strong component U of G, so that U2nE5#0.

The following lemma shows (4) and, thus, completes the proof of Theorem 3.2.

Lemma 34. Let M=(0,2,5,0,,Q¢) be an NFA with n states. It is decidable in
worst-case time O(n®- #2) (on a RAM without multiplications and divisions using the
uniform cost criterion) whether or not M complies with (1DA).

Proof. For background information on RAMs we refer to [15] and [1]. We present
an informal algorithm deciding whether or not M complies with (IDA). Note that this
algorithm uses well-known graph algorithms (see [1]) as subroutines:

Step 1: Remove all useless states from M. Let w.lo.g. M be trim.

Step 2: Construct E5 and G,.

Step 3: Compute the strong components of G4.

Step 4:  Decide whether or not M complies with (IDAY, i.e. check whether or not
there is a strong component U of G, so that U2NE}% #0.

It can be easily seen that the above algorithm has worst-case time complexity
Om® - #2). U

We add that a variant of the algorithm presented in the above proof can be
implemented on a nondeterministic logarithmically space-bounded Turing machine
(see, e.g. [6]). Thus, the problem “decide whether or not an NFA is infinitely
ambiguous” belongs to NSPACE(log, n) and, hence, also to NC.
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4. The degree of growth of the ambiguity

Let M=(Q,2,5,0,,Qr) be an NFA. The degree of growth of the ambiguity of
M (deg(M)) is defined as the minimal degree of a polynomial heNy[ X ] such that for
all xe2'* day(x) is at most h(|x]) if such a polynomial exists, or is infinite otherwise. If
deg(M) is finite (infinite), then M is called polynomially ambiguous (exponentially
ambiguous). By definition, deg(M)=0 iff da(M)< o0, and deg(M)=1 iff da(M)= o0.
Thus, the degree of growth of the ambiguity allows to distinguish infinitely ambiguous
NFAs.

The following criterion (EDA) characterizes the property “M is exponentially
ambiguous™:

(EDA): There is a useful state geQ such that, for some word veX*, day(q,v,q)=2
(see Fig. 8).

Let deN. The following criterion (IDA;) characterizes the property “deg(M)=d™:

(IDA;): There are useful states ry,sy, ...,rs,s;€Q and words v, u,,v,, ..., Uy, 1€ X *
such that for all A=1,...,.d r; and s; are distinct and
(ri,Ui,rl),(ri,U,{,SA),(S;L,U;L,SA)Eé and for all }.:2,..,,61 (Si_l,ul,rl)eé (See
Fig. 9).

Fig. 9
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Note: (IDA ) equals the criterion (IDA) introduced in Section 3. Let deN. If
M complies with (IDA,), then it also complies with (IDA,),...,(IDA,_,). If, more-
over, for some Ae[d], r; is connected with s;, where r;, s,€Q are selected according to
(IDA,), then M complies with (EDA).

In Section 3 we have shown that deg(M) > 1 if and only if M complies with (IDA,).
In this section we show the following theorems.

Theorem 4.1. (Reutenauer [16], Ibarra and Ravikumar [7]). Let M be an NFA with
n states. The assertions (i)—(iii) are equivalent.
(iy M is exponentially ambiguous.
(1) deg(M)=n.
(iil) M complies with (EDA).

Theorem 4.2. Let M be an NFA, and let deN. The assertions (i) and (ii) are equivalent.
(i) deg(M)=d.
(i) M complies with (IDA,).

Note: Our proof of Theorem 4.1 is mostly different from those in [16] and [7].
Theorem 4.2 is a generalization of Theorem 3.1.

Let M =(Q, Z,5,0,,QF) be an NFA with n states. We want to decide whether or not
M complies with (EDA). For this we define the directed graph G, =(0%E,):

EZ = {((Pl,l’z),(‘h’CIz))eQZ X Q2|3an\7’ie{l,2}: (pi’a’ ql)65}
Let M be trim. Then, (EDA) is equivalent to (EDA)"

(EDA): There is a strong component of G, which contains vertices (p,p>) and
(¢1,492) so that py=p, and ¢, #q..

Thus, using a straightforward algorithm (cf. Lemma 3.4), the following result can be
easily established:

5) It is decidable in time O(n*- # X) whether or not M complies with (EDA).
Theorem 4.1 and assertion (5) imply the following theorem.

Theorem 4.3. Let M be an NFA with n states and input alphabet X. It is decidable in
time O(n* # X) whether or not M is exponentially ambiguous.

Let M=(0Q,Z,5,0;,0¢) be an NFA with n states. We want to compute deg(M).
Theorem 4.2 implies that

(6) deg(M)=sup({0} U {deN|M complies with (IDA,)}).
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By topological sort we can find an order Q4, ..., Q, of the strong components of
M so that for all i,je[ k] the following holds:

dNQixZ*xQ;#P=i< .
Using the notation introduced in Section 3, we define the directed graph Gs=(Vs, Es)
and the set R Es:

VS :={Q1""’Qk}a

R:={(Q;,Q,)e Vs x Vs|there is a strong component U of G, so that

U2nE5#@ and Un{(p,p,q)eQ*|p#4,peQ:,qeQ;} #0},
Es=RuU{(Q:,0,)eVs x V50N Qi x Z* x Q;#0).

Let i,je[k]. It is easy to verify that (Q;,Q;)eR if and only if there are distinct states
peQ; and geQ; such that for some word veZ* (p,v, p),(p,v,q),(q, v, q)€d. In particu-
lar, if (Q;,Q;)€Es, then i<j.

Let M be trim. Then, we know for all deN that M complies with (IDA,) if and only
if there is a path in G5 which contains d edges of R. Hence, we conclude from (6) that
either RN{(Q;,Q;)lie[k]}#@, which implies that deg(M)=co, or deg(M) is the
maximal number of edges of R on any path in Gs. Thus, using a straightforward
algorithm (cf. Lemma 3.4), the following result can be easily established.

Theorem 4.4. Let M be an NFA with n states and input alphabet X. Then, deg(M) is
computable in time O(n®- #X).

Note that Theorem 4.4 generalizes Theorem 3.2.
In the rest of this section we consider an NFA M =(Q, Z,4,Q,,Qr). In order to
prove Theorem 4.1 we need the following lemma.

Lemma 4.5. Let M be a chain NFA with k strong components which does not comply
with (EDA). Then, deg(M)<k—1.

Proof. Let Q,,...,0, =0 and (py,..., ), (@15 ... q)€Q; X --- X Q) be given in corre-
spondence with the definition of a chain NFA. Let w.l.o.g. L(M)#@. Then, M is trim,
and Q,={p,}, Or=1{q,}. We show by induction on k that

(%)  VxeX*day(x)<|x|F~L
From (=) it follows that deg(M)<k—1.

Proof of (+). Base of induction: k=1. Select ve X * so that (g, v, p;)€d. Assume that,
for some xeX*, day(x)=day(p(,x,q;)=2. Then, dayl(q,,vx,q,)>=2. Hence, since
q, 1s useful, M complies with (EDA). (Contradiction!)
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Induction step: Let k=2. We (uniquely) divide M into the NFAs
M;=(0,,%,9,,{p1},{q:}) and M2=(U?:zQi,Z’az,{Pz},{Qk}) so that d=0,u
0,00 {gy} xZ x{p;}). M, and M, are chain NFAs which do not comply with
(EDA). Moreover, L(M;)#® (i=1,2). Let x=x,...x,€L(M) (Xy, ..., X,€Z). We ob-
serve that

daM(x)< Z dalu1 (Xl ...Xj_l)'daMz(Xj+1 ...x,,,).
Jj=1

From this follows with the induction hypothesis that

m
daM(x)< Z |Xj+1 ...xm|k_2<m' |x|k_2=‘x|k_1.
j=1

Hence, we know for all xeX* that day(x)<|x}¥"t. O

Proof of Theorem 4.1. Let M be an NFA with n states.

(i) = (i1): trivial.

(1) = (i1i): Let deg(M )= n. According to Lemma 2.3, there is a chain NFA M'c M
(having k' strong components) such that deg(M')=n. Since deg(M’)=2n>=k’, Lemma
4.5 implies that M’ complies with (EDA). Therefore, M complies with (EDA), too.

(iii) = (i): Let M comply with (EDA). Let geQ and veX* be selected according to
that criterion. Then, u, we Z* exist so that for all ieN, da,(uv'w)>=day(q, v, q)=2".
Assume that deg(M) is finite. Then, there is a polynomial he Ny[ X ] such that for all
ieN, the following holds: 2'<day (uviw)<h(juw|+|v|-i). (Contradiction!) Hence,
M is exponentially ambiguous. [J

In order to prove Theorem 4.2 we need the following lemma.

Lemma 4.6. Let M be a chain NFA which does not comply with (EDA). Let deN so that
deg(M)=d. Then, M complies with (IDA,).

Proof. Let Q,,...,0,<Q and (py,...,px), Gy, q)EQ; X --- X @, be given in corre-
spondence with the definition of a chain NFA. Since deg(M)> 1, we know that M is
trim and Q,={p,}, Qr={q:x}. We prove the lemma by induction on k.
Base of induction: k=1. From Lemma 4.5 (for k=1) follows that deg(M)=0.
Induction step: Let k=2. For each Ae[k] we construct the NFA

MA=(U[1=1 Qia27527{p1}1{ql}):
A i1
515=5m<_u Qi x X xQu U {g:} x 2 x {Pi+1}>-

From Lemma 4.5 (for k=1) follows that deg(M,)}=0. Since deg(M,)=deg(M)=1,
there is an le[k—1] such that deg(M,;)=0 and deg(M,,;)>1. According to
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Theorem 3.1, M, , complies with (IDA,). Thus, if d =1, the lemma is already proved
(since M also complies with (IDA)). Therefore, let d>2.

Let M'=( Uf=z+1 0., 2,8 {pi+1}-{q:}) be the uniquely determined NFA so that
§=08,08" V(BN {q} xZx{p+1}) M is a chain NFA which does not comply with
(EDA). Assume that deg(M'}<d—2. Then, there is a polynomial h'e N[ X ] of degree
d—2 such that for all xeZX* da,.(x) is at most A'(|x|). Let x=x,;...x,eL(M)
(x1,..-,xn€2). We observe that

daM(x)< Z daMl(xl ...Xj_l)'daM'(Xj+1 ...xm)
j=1

<Y da(My) B ([xj41.. xml)<da(M,)- | x]-H(|x)).
j=1
This implies that deg(M)<d — 1. (Contradiction!) Hence, deg(M')=d— 1. From the
induction hypothesis it follows that M’ complies with (IDA,_,). Hence, since
M, ., complies with (IDA;), M complies with (IDA,). [

Proof of Theorem 4.2. Let M be an NFA, and let deN.

(1) =(ii): Let deg(M)=>d.

Case 1: M complies with (EDA).

Let geQ and ve 2 * be selected according to (EDA). Then, distinct states r, seQ and
words y,, y,€X* exist so that v=y,y,, (¢, ¥1,7), (4, y1,5)€d, and (r, y,,9),(s, y2,q)€d
(see Fig. 10). This implies that {r,s} x {y,y;} % {r,s} =8. Thus, defining r,:=r, s;:=s,
vi=yav; (A=1,....,dyand u;:=y,y, (A=2,...,d), M complies with (IDA,).

Case 2: M does not comply with (EDA).

Y| Y1

Fig. 10
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According to Lemma 2.3, there is a chain NFA M'cM such that deg(M’)>d.
Obviously, M’ does not comply with (EDA). Lemma 4.6 implies that M’ complies with
(IDA;). Hence, M complies with (IDA,), too.

(ii)=(): Let M comply with (IDA;). Let ry,s,...,74,5,€Q and
Uy, Ug, Vs, ..., Uy, 0€X% be selected according to that criterion. Then, u,,weX*
exist so that for all ieN day([]5_, (uivh) w)=day(ry, v} [14-, @vh),s0) =i
Assume that deg(M)<d—1. Then, there is a polynomial heNy[X] of degree
d—1 such that for all ieN the following holds: i®<day([]4_, (u:vh) w)<
h(ZLI(|u,1|+|v,1|-i)+lw|). (Contradiction!) Hence, deg(M)>=d. O

5. The maximal finite degree of ambiguity

Let @ be a class of NFAs, and let neN. We define
da(®,n):=sup(Nyon {da(M)|Me®, M has n states}).

According to Theorem 2.1, da(®,n) is at most 5%2-n". Thus, da(®,n) denotes the
maximal finite degree of ambiguity of an NFA in @ with »n states. In this section we
deal with the following problem. Given a class @ of NFAs and neN, determine
da(®, n) or find out lower and upper bounds.

We consider the following classes of NFAs: the class @, of all NFAs, the class @5 of
all NFAs with one input symbol, the class &g of all NFAs recognizing a finite
language, the class @¢ of all chain NFAs, the class ¢¢, of all chain NFAs having
2 strong components, the class @¢y of all chain NFAs M having only unitary strong
components (i.e. “<A—4>” is the equality relation), and the class @¢y 4 of all NFAs in
@y with at most d input symbols (d=2,3,4,5).

Our results are summarized in the following theorem.

Theorem 5.1. Let @ be a class of NFAs, and let neN. Then, lower and upper bounds for
da(®,n) hold true as indicated in Table 1.

Note that in Lines 1-4 of Table 1 da(®, n) is of order 2°® while in Lines 5-10
da(®, n) is of order at least 2™ and at most 2°® '°#2"_In the light of the latter group of
results we want to formulate the following question: Where is da(®,, n) situated in the
range between 2°™ and 2°"'°22"? By Lemma 2.3 we know that da(®c,n)<
da(®,,n)<5%%-da(dc, n). Thus, it seems reasonable to consider the above question
for @ rather than for @,. But, even for @y ; we do not know the answer. Neverthe-
less, we conjecture that da(dc, n) (and, hence, also da(®q,n)) is of order 2°®.

Proof of Theorem 5.1 (summary).
Line 1: [20, Theorem 5.1].
Line 2: [20, Theorem 5.2].
Line 3: Lemma 5.2 and assertion () in the proof of Lemma 2.5 (for k=2).
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Line Class @ Lower bound Upper bound
1 ®,5s=NFAs with
one input symbol b 71
2 &, =NFAs recognizing M n
a finite language
s (L(n+1)/2j) <L(n+1)/2J)
3 &, =chain NFAs having ifnz2:
2 strong components m-2 -t
4 Dy, =NFAs in @ with if n=1mod6:
at most 2 input symbols 20-5283(n= 1) 215284+t 1)
5 by, 3=NFAs in &y with
at most 3 input symbols ! "
6 bey. o =NFAs in @ with if n=1mod 3:
at most 4 input symbols 2n+logan=4.5850 n"
7 Py, s=NFAs in &gy with if n=0mod 64:
at most 5 input symbols 21.0221n n
8 @y =chain NFAs having only if n=0mod 64:
unitary strong components 21-0221m n"
9 &-=chain NFAs if n=0mod 64:
21 02210 nn
10 ®y=all NFAs if n=0mod 64:
21A02214n 21.1610'n,nn
Line 4 Lemmas 5.6 and 5.7.
Line 5: [20, Lemma 5.5] and Lemma 2.5.
Line 6: [20, Lemma 5.6] and Lemma 2.5.
Line 7: [20, Lemma 5.7] and Lemma 2.5.
Lines 8-9: Line 7 and Lemma 2.5.
Line 10: Line 7 and Theorem 2.1. [

The next lemma proves the lower bound in Line 3 of Table 1.

Lemma 5.2. Foralln;,n,eN thereis atrim NFAM:=M,, ,,e®c, with n; +n, states
and ny +n;+2 input symbols such that the following assertions are true:

(i) The two strong components of M have n, and n, states, respectively.

(i) 2"*m2g<da(M,, ,,) < .
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Proof. Let n;,n,eN. We construct M :=M,, ,,=(Q,Z,8,0,, Or):
Q:=Q10Q29 Ql::{pl"--apm}a Q25:{Q1’—--,qnz}, Ql:={pn1}’ QF:={qn2}a

Z={IEZ| —(nz—1)<i<n1—1}0{a1,a2,a3},

8= é(a),

ael

where

® 5():={(p; b p)li+2<j<n JU{pis X {i} x {1, i} U (g0, q)11<j<ny }
(ie[n, —11),
® 5(0):={(p;,0,p)12<j<n }U{(P1,0,91)} U{(q;,0,q))I 1< j<n,},
o d(—i)={pi} x{—i} x{qu,p1, s Pn } {1, s i} X {—i} x {gis1}
u{lg;, —ig)li+2<j<n,}  (ie[ny—1]),
® d(ay)={pn}x{a:}xQ1, 0ar):=Q,x{a2}x{qu,}, 6(a3)={(gn,>a3,91)}.

(See Fig. 11 for the definition of J in the case ny =5 and n,=4)

M is a trim chain NFA having the strong components @, and Q,. Thus, it also
meets the assertion (i). M is planned to recognize a suitable input word by “counting”
through almost all sets of its states.

Claim 5.3. M is finitely ambiguous.

Assume that da(M) is infinite. Then, by Theorem 3.1, M complies with (IDA). By
inspection of M, we observe that for all (p’, x, ¢’ )eQ; x Z* x Q;,day(p’, x,q’) is at most
1 (i=1,2). Therefore, according to (IDA), peQ,, qeQ, and veX* exist such that
(p,v,p),(p,v,q4),(q,v,q)ed. From this follows that g=g¢, and ve{0,...,n, —1}* This
implies that (p,v, p)¢d or (p,v,q)¢d. (Contradiction!)

Definition of 6 (n; =5, np=4):

ay 4 3 2 1 0 -1 ag ag
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Gu(y) (n1=4, np=3):

2,01020103010201-101020103010201R01020103010201-1010201030102010a;

. — —

Fig. 12

Claim 5.4. da(M)z2m+n22,

. . 2
We construct the words y i=e, yV =y 0yl (i=1,...,n, = 1), y& =y,

yP =y (—i)y?, (i=1,...,n,—1), and y:=a, y{?_, Oa,. Counting selected accept-
ing paths for y in M it is easy to show that da,,(y)=2"*"2~2 (see Fig. 12 for the graph
Gy () in the case n, =4 and n,=3).

From Claims 5.3 and 5.4 it follows that M meets the assertion (ii). [

We add to the proof of Lemma 5.2 that the NFA M, ,, turns out to be quite useful
in order to construct finite-valued finite transducers [20, Chapter 12; 21, Section 4]
and finite monoids of matrices with entries in N [23, Section 2].

Let M=(Q,%2,5,0;,0F) be a trim NFA in &y with n states. According to the
definition of @y, there is an order q;, ..., q, of the states of M such that 0,={q, },

Qr={g,} and s JI_, {q:} xZ x {q:} Wiz} {@:} X Z % {gi+1}. Thus, the criterion
(IDA) introduced in Section 3 reads for M as follows:

(CU-IDA): <Ki<j<n da;,...,0; €XZVk=i,...,j—1
(qi>ax’qi)65 & (qK!aK’qK‘Fl)Eé & (qj’ax’qj)65'

Together with Theorem 3.1, this implies Lemma 5.5.

Lemma 5.5. Let M be a trim NFA in @¢y as above. M is finitely ambiguous if and only
if the following assertion is true:

(CU-FDA): Vii<j<n i<k =xk(i,j)<j Yael:
(qi’aaqi)eé & (qj9a’qj)65:>(qxaa’qk+l)¢6'

Using Lemma 5.5 we are able to establish the bounds in Line 4 of Table 1 with
Lemmas 5.6 and 5.7.



346 A. Weber, H. Seidl

Lemma 5.6. For each n=1mod 6 there is a trim NFA M,e®¢y. , with n states such
that 20-3283 (= 1) 3= D13 < da(M,,) < 0.

Proof. Let n=1mod 6. We construct M,=(G, X, 9,0, Or):
Q:={q1, -, qu}, Z={1,2}, Q={q:}, Qr:=1{a.},
0 ={(gsi+1,1.96i+1)|0<i<(n—1)/6}
U{lgn L qiv )1 <i<n—1,i#3mod6}
U{(@6i+3.2.96i+ 3)|0<i<(n—7)/6}
U{(g1,2,9i+ Il <i<n—1, i#0 mod6}.
We define for all 1 <i<j<n,
i+2 ifij=1mod 6,
k(i,jy={( i+3 ifi,j=3mod6,

i otherwise.

Using this definition it can be easily checked that M, is a trim NFA in @y , which
complies with (CU-FDA). Consider y:=(122°1%)"~ /6 ¥* Counting selected accept-
ing paths for y in M, it is easy to show that da,, (y)=>9""'"¢ (see Fig. 13). In
conclusion, we know by Lemma 5.5 that

3= VB Lday, (y)<da(M,)<ow. O

Definition of 8 and Gy, (y) (n=13):

—
[av]

11 222221111 1222R2R=2211.1

Vo SN A
SN LA

Fig. 13
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Lemma 5.7. Let M be a finitely ambiguous NFA in &y , with n states. Then, the
degree of ambiguity of M is at most 2"~ 13"~ /3,

Proof. We assume that M =(Q, X, 3, 0, Qf ) is trim and corresponds with the notation
used in Lemma 5.5. Thus, there is an order q,,...,q, of the states of M such
that Qi=1{q,}, Qr=1{q,} and d=|Ji_ {q:} x T x {Q;}UU:‘:—; {qi) x Zx{qi+1}. Let
r={1,2}.

For each a=(a,....,a,_)ex" "} we construct the NFA
M“=(Q,%,6“,0,,0r) = M:

5("):=5ﬁ<o {Qi}XZX{Qi}UnQ {(Qi’aivqi+1)}>-
i=1 i=1

Note that (q,,a;,92),-..»(qn-1,s-1,q,) are the only possible bridges of M“. We
observe for all xeZ* that

day(x)= Y daye(x).

agin—!

This implies that

daM)< Y da(M?)<oc.

aein—1

Therefore, the lemma follows from assertion ().

(*) Let M be an NFA as above. Let a,,...,a,-,€X so that (g,,a,,4,),...,
(4s- 1,44 1,q,) are the only bridges of M. Then, da(M) is at most 3~ 13,

We prove () by induction on #n. If n=1, then M is unambiguous, i.e. da(M)=1.

Let n>1. By Lemma 55 M complies with (CU-FDA) Assume that
{1} xZx{q;}u{q,} xZ x{q,} =0. Then, taking x:=«(l,n)e[n—1] as in (CU-
FDA), we observe that dn{g.} x Z x {g,+}=§. (Contradiction!) We can w.Lo.g.
assume that (¢,2,9,)¢90, (q;,1,4,)€d, and that a; =1. Define I'=max{2<i<n|a, =
~+=@;_y=1}.Thus,a,=---=a,_,; =1 and either I=n or a,=2. Since (g, 1, g, )d and
M complies with (CU-FDA), we observe for all i=2, ..., that (q;, 1, g;)¢ (see Fig. 14).

Let xeZ*. Let teN; and yef{e}u {2} -Z* so that x=1'. From the induction
hypothesis it follows that

1 !
day(x)= Z day(qy, 1, q;) day(gi, y,q.) < Z 3mmt=H=br3

i=2 i=2

=(l— 1).3(n—l)/3<3(l—1)/3 L3 =D3 _ 3 1)/3

Note that j<373(jeN), Thus, da(M) is at most 3¢~ 1’3,
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Let us remark that for each n=1mod4 there is an NFA M, as in () such that
2Dt gda(M,)<oo. My is presented in Fig 14. In fact, 4<day,(yy®)<
da(My)< oo, where y:=112122. [J
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