Lecture 2

Linear recursive sequences

Powered by BeamerikZ


https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

Recursive sequences

e Geometric sequences

do = 4, n+1 = dqn - C
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Recursive sequences

e Geometric sequences

qo = 4, n+1 = dqn - C

e Arithmetic sequences

up = a, Upnt1 = Up + b
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Recursive sequences

e Geometric sequences

do = 4, dn+1 = d4n - C

up = a, Upnt1 = Up + b

e Fibonacci sequence F,
fo =0, h=1, fp="~_1+f,_o for n>=2

bl a|ala]h|a6]6]6]|6]6]|f]|A
01]|1|2]3|5]|8|13]21]34]55|89
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Linear recursive sequences (LRS)
Fix a semiring S(®,®,0,1) (I often omit ®)

Upyk = dklpnirk—1 @ dk—1Up+k—1 @ ce @ dilp

fixing a1,...,ax €S and wp,...,uk_ 1 €S
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Linear recursive sequences (LRS)
Fix a semiring S(®,®,0,1) (I often omit ®)

Upyk = dklpnirk—1 @ dk—1Up+k—1 @ ce @ dilp

fixing a1,...,ax €S and wp,...,uk_ 1 €S

e Examples for S(®,®,0,1) = (Q, +,-,0,1):

Fibonacci sequence F, k=2, ai=a=1 F =0 F=1
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Linear recursive sequences (LRS)
Fix a semiring S(®,®,0,1) (I often omit ®)

Upyk = dklpnirk—1 @ dk—1Up+k—1 @ ce @ dilp

fixing a1,...,ax €S and wp,...,uk_ 1 €S

e Examples for S(®,®,0,1) = (Q, +,-,0,1):

Fibonacci sequence F, k=2, ai=a=1 F =0 F=1

Geometric sequences q, k=1, aj=c¢, qy=a
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Linear recursive sequences (LRS)
Fix a semiring S(®,®,0,1) (I often omit ®)

Upyk = dklpnirk—1 @ dk—1Up+k—1 @ ce @ dilp

fixing a1,...,ax €S and wp,...,uk_ 1 €S

e Examples for S(®,®,0,1) = (Q, +,-,0,1):

Fibonacci sequence F, k=2, ai=a=1 F =0 F=1

Geometric sequences q, k=1, aj=c¢, qy=a
Definition

up is (homogeneous) linear recursive if there is

L(x1,x0, ..., xk) =a1x1® ... Dakxk, a €S

st. Upik = L(up, ..., upik—1) forall n
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Linear recursive sequences (LRS)
Fix a semiring S(®,®,0,1) (I often omit ®)

Upyk = dklpnirk—1 @ dk—1Up+k—1 @ ce @ dilp

fixing a1,...,ax €S and wp,...,uk_ 1 €S

e Examples for S(®,®,0,1) = (Q, +,-,0,1):

Fibonacci sequence F, k=2, ai=a=1 F =0 F=1

Geometric sequences q, k=1, aj=c¢, qy=a

Definition
up is (homogeneous) linear recursive if there is
L(xp,x0,...,xk) =a1x1®D...Dakxxk, a €S
st. Upik = L(up, ..., upik—1) forall n
Fibonacci: L(x1,x) = x1 + x
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Nonhomogeneous linear recursive sequences

Definition
up is (nonhomogeneous) linear recursive if there is
L(Xl,XQ,...,Xk) =a1x1P... P axkPag, a; € S

st. Upik = L(up, ..., upig—1) forall n
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Nonhomogeneous linear recursive sequences

Definition
up is (nonhomogeneous) linear recursive if there is
L(Xl,XQ,...,Xk) =a1x1P... P axkPag, a; € S

st. Upik = L(up, ..., upig—1) forall n

e Example for (Q,+,-,0,1)
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Nonhomogeneous linear recursive sequences
Definition
up is (nonhomogeneous) linear recursive if there is
L(Xl,XQ,...,Xk) =a1x1P... P axkPag, a; € S

st. Upik = L(up, ..., upig—1) forall n

e Example for (Q,+,-,0,1)

e But notice that u,.1 — u, = b for all n
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Nonhomogeneous linear recursive sequences

Definition
up is (nonhomogeneous) linear recursive if there is
L(Xl,XQ,...,Xk) =a1x1P... P axkPag, a; € S

st. Upik = L(up, ..., upig—1) forall n

e Example for (Q,+,-,0,1)

e But notice that u,.1 — u, = b for all n

SO Upy2 — Upy1 = Upy1 — Uy

Filip Mazowiecki Automata and sequences 3/ 17



Nonhomogeneous linear recursive sequences

Definition
u, is (nonhomogeneous) linear recursive if there is
L(Xl,XQ,...,Xk) = a1x1 D ... P axiPag, a; € S

st. Upik = L(up, ..., upig—1) forall n

e Example for (Q,+,-,0,1)

e But notice that u,.1 — u, = b for all n

SO Upy2 — Upy1 = Upy1 — Uy

This gives us a homogeneous definition for k = 2
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Nonhomogeneous linear recursive sequences

Definition
u, is (nonhomogeneous) linear recursive if there is
L(Xl,XQ,...,Xk) = a1x1 D ... P axiPag, a; € S

st. Upik = L(up, ..., upig—1) forall n

e Example for (Q,+,-,0,1)

e But notice that u,.1 — u, = b for all n

SO Upy2 — Upy1 = Upy1 — Uy

This gives us a homogeneous definition for k = 2
it's not a coincidence
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Linear recursive sequences recursion depth

Number of previous elements referred to (k)
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Linear recursive sequences recursion depth

Number of previous elements referred to (k)

Examples: Fibonacci k = 2, geometric k = 1,

arithmetic k = 2 (homogeneous) or k = 1 (nonhomogeneous)
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Linear recursive sequences recursion depth

Number of previous elements referred to (k)

Examples: Fibonacci k = 2, geometric k = 1,

arithmetic k = 2 (homogeneous) or k = 1 (nonhomogeneous)

e Can we restrict to recursion depth 17
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Linear recursive sequences recursion depth

Number of previous elements referred to (k)

Examples: Fibonacci k = 2, geometric k = 1,

arithmetic k = 2 (homogeneous) or k = 1 (nonhomogeneous)

e Can we restrict to recursion depth 17
Not for homogeneous: u,,1 = ¢ - u, are geometric sequences

For nonhomogeneous also no (see tutorials)
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Linear recursive sequences recursion depth
Number of previous elements referred to (k)
Examples: Fibonacci k = 2, geometric k = 1,
arithmetic k = 2 (homogeneous) or k = 1 (nonhomogeneous)
e Can we restrict to recursion depth 17
Not for homogeneous: u,,1 = ¢ - u, are geometric sequences

For nonhomogeneous also no (see tutorials)

e |dea: system of linear sequences
Example: Fibonacci F, with an extra sequence G, ( = F,41)
FO =0 Fn+1 - Gn
GOZ]- Gn+1:Fn+Gn
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Definition

A sequence is defined by a system of linear sequences if u, = u! and

f
1 _
Uy =

=

uk =

\

where L; are linear, ¢; € S

1

(6)

Ck

(

\

System of linear sequences

1

2

un—i—l -

k

un~|—1 —

_ 1,2
up = Li(uy,ug, ...
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System of linear sequences

Definition

A sequence is defined by a system of linear sequences if u, = u! and

. .
1 _ 1 _ 1,2 k
Uy = ¢ up = Li(ug, us, ..o, up)
2 2 1,2 k
< ug = @ | us = Lo(up, us, ..., up)
k _ ko _ 1,2 k
| up = | Up1 = Li(up,usy. . uy)

where L; are linear, ¢; € S

e This is equivalent to

We have k dimensional vector of sequences: ,' = (u},. .., u¥)
With a k dimensional vector of initial values /T = (¢, ..., c)
And a matrix M of dimension k x k s.t. a,' = ITM"

(Mo, i] = Lj)
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System of linear sequences

Definition

A sequence is defined by a system of linear sequences if u, = u! and

where L; are linear, ¢; € S

Fo=20 Fri1 = G,
Gp=1 Gpy1 = Fo + G,

Fner=01(3 1)

Filip Mazowiecki

r r
1 _ 1 _ 1,2
Uy = ¢ up = Li(uy,ug, ...
2 2 1,2
< UO = & < Un_|_1 — LQ(Un,Ur”...
k _ k _ 1,2
| up = | Up1 = Li(u,, u

ny -

Automata and sequences
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Example definable by a system of linear equations

Over (Q, +,-,0,1)
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Example definable by a system of linear equations

Over (Q, +,-,0,1)

Example

Consider a, = n?, recall (n+1)>=n’+2n+1
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Over (Q, +,-,0,1)

Example

Example definable by a system of linear equations

Consider a, = n?, recall (n+1)>=n’+2n+1

-

\

30:O

C0=1

-

an_|_1 — an + + Cn
4 = Db, + ¢,
Ch+1 = Cp
\
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Example definable by a system of linear equations

Over (Q, +,-,0,1)

Example

Consider a, = n?, recall (n+1)>=n’+2n+1

( (
8020 apy1 = an + + Cp
< =0 4 = b, + ¢,
¢ = Ch+l = Cp
\ \
0 100
=10 M = 0
1 111
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Example definable by a system of linear equations

Over (Q, +,-,0,1)

Example

Consider a, = n?, recall (n+1)>=n’+2n+1

( (
8020 apy1 = an + + Cp
< =0 4 = b, + ¢,
) = Ch+1 = Cp
\ \
0 100
=10 M = 0
1 111
(ap, by, cp) = ITM"
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Example definable by a system of linear equations

Over (Q, +,-,0,1)

Example
Consider a, = n?, recall (n+1)>=n’+2n+1

( (

80:0 apy1 = an + + Cp
< =0 4 = b, + ¢,
) = Ch+1 = Cp
\ \
0 100
=10 M = 0
1 111
(ap, by, cp) = ITM" Can you define it as a linear sequence?
Filip Mazowiecki Automata and sequences
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Equivalence of the definitions

Theorem
If S is a commutative ring then
(1) a, is homogeneous linear recursive iff
(2) a, is nonhomogeneous linear recursive iff

(3) a, is definable as a system of linear equations
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Equivalence of the definitions

Theorem
If S is a commutative ring then
(1) a, is homogeneous linear recursive iff
(2) a, is nonhomogeneous linear recursive iff

(3) a, is definable as a system of linear equations

Proof.

e We will prove

(1) = (2) obvious
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Equivalence of the definitions

Theorem
If S is a commutative ring then
(1) a, is homogeneous linear recursive iff
(2) a, is nonhomogeneous linear recursive iff

(3) a, is definable as a system of linear equations

Proof.

e We will prove

(1) = (2) obvious

(2) = (3) next slide
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Equivalence of the definitions

Theorem
If S is a commutative ring then
(1) a, is homogeneous linear recursive iff
(2) a, is nonhomogeneous linear recursive iff
(3) a, is definable as a system of linear equations

Proof.

e We will prove

(1) = (2) obvious
(2) = (3) next slide

(3) = (1) the hard part

Filip Mazowiecki Automata and sequences 7/ 17



From nonhomogeneous to a system
Let L(x1,x0,...,%Xk) = aix1 + ...+ akxx + ap (semiring +)

Such that vy x = L(up, -+ Upik—1)
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From nonhomogeneous to a system
Let L(x1,x0,...,%Xk) = aix1 + ...+ akxx + ap (semiring +)
Such that vy x = L(up, -+ Upik—1)

1

0 k _ 1
e We use k extra sequences u;, u-, ..., u;, where u, = u;
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From nonhomogeneous to a system
Let L(x1,x0,...,%Xk) = aix1 + ...+ akxx + ap (semiring +)

Such that vy x = L(up, -+ Upik—1)
e We use k extra sequences 1, ul,

o Define u) = ag and 12, ; = u°

k _ 1
,uy, where u, = u;
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From nonhomogeneous to a system
Let L(x1,x0,...,%Xk) = aix1 + ...+ akxx + ap (semiring +)

Such that vy x = L(up, -+ Upik—1)
e We use k extra sequences 1, ul,

0
n

k _ 1
,uy, where u, = u;
o Define u) = agand W%, = u

i _ - i i+1 -
A =y -
e And uy = uj_j forall 0 <i< kandu, ; =u""for0<i<k
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From nonhomogeneous to a system
Let L(x1,x0,...,%Xk) = aix1 + ...+ akxx + ap (semiring +)

Such that vy x = L(up, -+ Upik—1)
We use k extra sequences u®, u?,

0
n

k _ 1
,uy, where u, = u;
Define ud = ag and W%, = u
And ufy = u; 1 forall0 <i<kandu ,, =ufor0<i<k

Finally u¥,; = aju} + ... + aguf + 2
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From nonhomogeneous to a system
Let L(x1, X2, ...,Xk) = a1x1 + ... + akxx + ao (semiring +)

Such that vy x = L(up, -+ Upik—1)
We use k extra sequences u®, u?,

0
n

k _ 1
,uy, where u, = u;

o Define u) = agand W%, = u

e And uf =u; g forall0 <i<kandu ;=uttfor0<i<k
e Finally uf,; = aju} + ... + aguf + u?
% 5
Xg = — Xpp1 = X,
e Example 0 LT o
up = Ug Ups1 = by
Un+3 = 3Upyo — 2Upp1 + 4up — 5~ < 4
by = bpi1 = ¢y
€0 = W2 | Cn+1 = 3¢, — 2b, + 4u, + x,
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From systems to homogeneous linear recursive sequences

e Suppose 4, = ITM"
1

e
IT= (..., uf)

1
n

where a,' = (u ,uf) and M is k x k dimensional

and u, = u
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From systems to homogeneous linear recursive sequences

e Suppose 4, = ITM"

where a;,' = (ul, ..., u¥) and M is k x k dimensional
T _ (1 k

I = (uy,...,u5)

and u, = u}

Notice that u, = ITM"F for FT = (1,0,...,0)
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From systems to homogeneous linear recursive sequences

e Suppose 4, = ITM"

where a;,' = (ul, ..., u¥) and M is k x k dimensional
T _ (1 k

I = (uy,...,u5)

and u, = u}

Notice that u, = ITM"F for FT = (1,0,...,0)

o We fix the first k elements as uj, ... u}_;
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From systems to homogeneous linear recursive sequences

e Suppose 4, = ITM"

where a;,' = (ul, ..., u¥) and M is k x k dimensional
T _ (1 k

I = (uy,...,u5)

and u, = u}

Notice that u, = ITM"F for FT = (1,0,...,0)

o We fix the first k elements as uj, ... u}_;

o Let det(Md — M) = p(A\) = ak M + ...+ a AL + ag
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From systems to homogeneous linear recursive sequences

e Suppose 4, = ITM"

where a;,' = (ul, ..., u¥) and M is k x k dimensional
T _ (1 k

I = (uy,...,u5)

and u, = u}

Notice that u, = ITM"F for FT = (1,0,...,0)

o We fix the first k elements as uj, ... u}_;

o Let det(Md — M) = p(A\) = ak M + ...+ a AL + ag

p(A) is the characteristic polynomial of M so:

ak=1
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From systems to homogeneous linear recursive sequences

e Suppose 4, = ITM"
1

e
IT= (..., uf)

1
n

where a,' = (u ,uX) and M is k x k dimensional

and u, = u

Notice that u, = ITM"F for FT = (1,0,...,0)

o We fix the first k elements as uj, ... u}_;

o Let det(Md — M) = p(A\) = ak M + ...+ a AL + ag

p(A) is the characteristic polynomial of M so:
a, =1

p(A) = 0 (Cayley-Hamilton theorem)

aaMK + ..+ aM + agl =0
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From systems to homogeneous linear recursive sequences

o u,=ITM"F
aMs 4+ . 4+ M+ a5l =0

ak=1
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From systems to homogeneous linear recursive sequences

e u,=I"M"F
aMs 4+ . 4+ M+ a5l =0

ak=1

k—1
o Mn+k _ Z _al_Mn—l—l
=0
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From systems to homogeneous linear recursive sequences

e u,=I"M"F
aMs 4+ . 4+ M+ a5l =0
dix = 1
k—1 .
o Mn+k _ Z _al_Mn—l—l
i=0
k—1 .
Upie = ITMPRFE = 1T [ Y —aM™ | F
i=0
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From systems to homogeneous linear recursive sequences

e u,=I"M"F
aMs 4+ . 4+ M+ a5l =0
dix = 1
k—1
o Mn+k _ Z _al_Mn+i
i=0
k—1 |
Upik = ITMn+kF _ IT Z _al_Mn—i-/ E
i=0
k—1 | k—1
By linearity: Upik = Y —aj (/TM’”’F) = Z —ajlUpy |
i=0 i=0
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From systems to homogeneous linear recursive sequences

e u,=I"M"F
aMs 4+ . 4+ M+ a5l =0
dix = 1
k—1
o Mn+k _ Z —a;M"+i
i=0
k—1 |
Upik = ITMn+kF _ IT Z _al_Mn—i-/ E
i=0
k—1 | k—1
By linearity: Upik = Y —aj (/TM”+’F) = Z —ajlUpy |
i=0 i=0

This defines u, as a homogeneous linear recursive sequence

Filip Mazowiecki Automata and sequences 10 / 17



Example

Example

Consider a, = n?, recall (n+1)> =n’>+2n+1

30:O

I

8))

an_|_1 - an + + Cn
— + Cn
Ch+1 = Cp
\
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Example

Example

Consider a, = n?, recall (n+1)> =n’>+2n+1

a =20 ant1 = ap + + ¢,
4 =0 \ = b, + ¢,
=1 Ch+1 = Cp
\ \
0 100
=10 M = 0 det()\ld—/\/l)z)\3—3)\2—3)\—1
1 111
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Example

Example

Consider a, = n?, recall (n+1)> =n’>+2n+1

a =20 ant1 = ap + + ¢,
4 =0 \ = b, + ¢,
=1 Cntrl = Cp
\ \
0 100
=10 M = 0 det(Ald — M) = X3 —3)\2 — 3\ —
1 111

Then a,,3 = 3a,.0 — 3a,41 + a,
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Example

Example

Consider a, = n?, recall (n+1)> =n’>+2n+1

e e

30:0 apy1 = an + + C,

4 =0 \ = b, + ¢,
COZ]. Cht1 = Cp

\ \
0 100

I=1o M = 0 det(Ald — M) = A3 — 3)\% — 3\ —

1 111

Then a,,3 = 3a,.0 — 3a,41 + a,
Verify that (n + 3)? = 3(n +2)2 —3(n + 1)? + n?

Filip Mazowiecki Automata and sequences
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Comments
e These worked for any semiring:

(1) = (2)
(2) = ()
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Comments
e These worked for any semiring:
(1) = (2)

(2) = ()

e (3) = (1) this required the Cayley—Hamilton theorem

which is true for commutative semirings
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Comments

e These worked for any semiring:
(1) = (2)
(2) = (3)

e (3) = (1) this required the Cayley—Hamilton theorem

which is true for commutative semirings
e The most general class:

The class of sequences defined by systems of linear sequences

When | refer to linear sequences | will refer to sequences definable by a system
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Comments

e These worked for any semiring:
(1) = (2)
(2) = (3)

e (3) = (1) this required the Cayley—Hamilton theorem

which is true for commutative semirings

e The most general class:
The class of sequences defined by systems of linear sequences

When | refer to linear sequences | will refer to sequences definable by a system

e On tutorials: for some semirings that are not rings the inclusions:
(1) < (2) < (3) are strict
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Connections with weighted automata
Recall: [A] : X" — S

[[.A]] (3132 “o . an) = /TM31M32 “ e ManF
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Connections with weighted automata
Recall: [A] : X" — S
[A] (2122 .. a,) = "My M., ... M, F
e Assume that ¥ = {a}, ie. |X| =1

Then I* = {¢,a,a%, ...} =N
(identify every word with its length)
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Connections with weighted automata
Recall: [A] : X" — S
[A] (2122 .. a,) = "My M., ... M, F
e Assume that ¥ = {a}, ie. |X| =1
Then I* = {¢,a,a%, ...} =N
(identify every word with its length)
[A] : N — S, they define sequences

[A] (n) = TM"F
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Connections with weighted automata
Recall: [A] : X" — S
[A] (2122 .. a,) = "My M., ... M, F
e Assume that ¥ = {a}, ie. |X| =1
Then I* = {¢,a,a%, ...} =N
(identify every word with its length)
[A] : N — S, they define sequences
[A] (n) = ITM"F

e For F = (1,0,...,0) these are sequences definable by systems

On tutorials you'll see that for any F we are still in the same class

Filip Mazowiecki Automata and sequences
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From sequences to weighted automata

e Suppose 4, = ITM"
1

e
IT= (..., uf)

1
n

where ' = (u ,uX) and M is k x k dimensional

and u, = u
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From sequences to weighted automata

e Suppose 4, = ITM"

where a;,' = (ul, ..., u¥) and M is k x k dimensional
T _ (1 k

I = (uy,...,u )

and u, = u}

e Set A= (Q,X, T,I,F)
Q={1,....k}, I"T=(u},...,uf), FT =(1,0,...,0)
T ={(p,a,s,q) | My[p,q] = s}
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From sequences to weighted automata

e Suppose 4, = ITM"

where a;,' = (ul, ..., u¥) and M is k x k dimensional
T _ (1 k

I = (uy,...,u )

and u, = u}

e Set A= (Q,X, T,I,F)
Q={1,....k}, I"T=(u},...,uf), FT =(1,0,...,0)
T ={(p,a,s,q) | My[p,q] = s}

e Example

Fibonacci over (Q,+,-,0,1)

ey @O (o
al
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From sequences to weighted automata

e Suppose 4, = ITM"
1

ny -

=(u&,...,ué‘)

1
n

where ' = (u ,uX) and M is k x k dimensional

/T

and u, = u
e Set A=(Q,X, T,/ F)

Q={1,....k} I"T=(u,...,uf), FT =(1,0,...,0)

T ={(p,a,s,q) | Mi[p, q] = s}

e Example

1
Fibonacci over (Q,+,-,0,1) y

ey @O (o
al

e When weights are 1 then it is equivalent to counting the accepting runs
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Closed form
Fix (Q,+,-,0,1)

e u, = ITM"F characteristic polynomial p(x) = (x — A1)™ ... (x — X\)™
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Closed form
Fix (Q,+,-,0,1)

e u, = ITM"F characteristic polynomial p(x) = (x — A1)™ ... (x — X\)™

(M) 00 0
0 Jo(h) O 0
M" = BJ"B-l,  Jn =
0 0 Jrzs_l()\s—l) 0
0 0 Ims(As)
NN QN ()N
0 AT (DA (AT
ng,-()‘i): : : " - : ’
0 0 A (DA
0 0 0 U
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Closed form
Fix (Q,+,-,0,1)

e u, = ITM"F characteristic polynomial p(x) = (x — A1)™ ... (x — X\)™

(M) 00 0
0 Jo(h) O 0
M" = BJ"B~l, =
0 0 Jn ,(Asm1) 0
0 0 1 (As)
Y DY (4 PV (N PV
0 A (DA (AT
ng,-()‘i) = | : : " - : ’
0 0 A (DA
Note \; € C 00 0 AL
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Closed form continued

o u=ITMF =32 pi(n)A]

Where \; € C roots of the characteristic polynomial

p; are polynomials over C
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Closed form continued

o u=ITMF =32 pi(n)A]

Where \; € C roots of the characteristic polynomial

p; are polynomials over C

e For example for Fibonacci

1
Characteristic polynomial is det (xld — <(1) 1)) = x> —x+1

(x — 155) (x — 155)
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Closed form continued

o u=ITMF =32 pi(n)A]

Where \; € C roots of the characteristic polynomial

p; are polynomials over C

e For example for Fibonacci

1
Characteristic polynomial is det (xld — <(1) 1)) = x> —x+1

(x — 155) (x — 155)

e One can verify that F, = \%(12\@)” -
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Asymptotics
Lemma

If u, is a linear recursive sequence over (Q, +,-,0,1)

then |u,| < ¢” for some c € Q
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Corollary
The sequence u, = n! cannot be defined by weighted automata over
<Q7 +7 " 07 1)
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If u, is a linear recursive sequence over (Q, +,-,0,1)

then |u,| < ¢” for some c € Q

Corollary

The sequence u, = n! cannot be defined by weighted automata over

<Q7 +, 07 1)

Proof.
n! > (2)" for n big enough  (by Stirling)

€
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Asymptotics

Lemma
If u, is a linear recursive sequence over (Q, +,-,0,1)

then |u,| < ¢” for some c € Q

Corollary

The sequence u, = n! cannot be defined by weighted automata over

<Q7 +, 07 1)

Proof.
n! > (2)" for n big enough  (by Stirling)

€

(2)" = on(log(n)—log(e))

e
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