Lecture 3

Ambiguity of automata

Powered by BeamerikZ

 \mathcal{A} an automaton (finite or weighted)

 \mathcal{A} an automaton (finite or weighted)

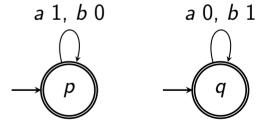
Important: Q states, $I, F \subseteq Q$ initial and final states (for weighted initial, final are $\{q \mid I(q) \neq 0\}$, $\{q \mid F(q) \neq 0\}$)

 \mathcal{A} an automaton (finite or weighted)

Important: Q states, $I, F \subseteq Q$ initial and final states (for weighted initial, final are $\{q \mid I(q) \neq 0\}$, $\{q \mid F(q) \neq 0\}$)

How many accepting runs are there for each word?

• Maximum of number of a's and number of b's

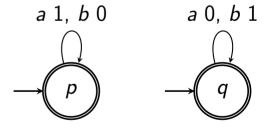


 \mathcal{A} an automaton (finite or weighted)

Important: Q states, $I, F \subseteq Q$ initial and final states (for weighted initial, final are $\{q \mid I(q) \neq 0\}$, $\{q \mid F(q) \neq 0\}$)

How many accepting runs are there for each word?

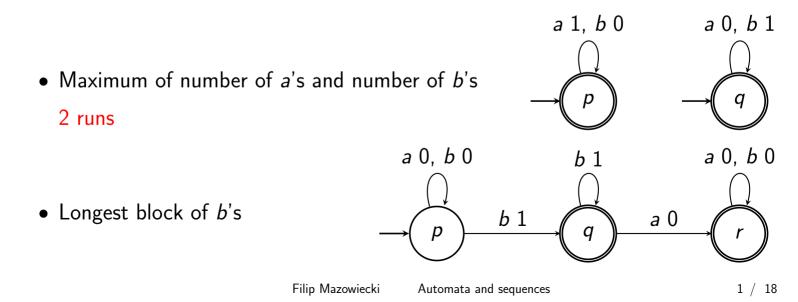
Maximum of number of a's and number of b's
 2 runs



 \mathcal{A} an automaton (finite or weighted)

Important: Q states, $I, F \subseteq Q$ initial and final states (for weighted initial, final are $\{q \mid I(q) \neq 0\}$, $\{q \mid F(q) \neq 0\}$)

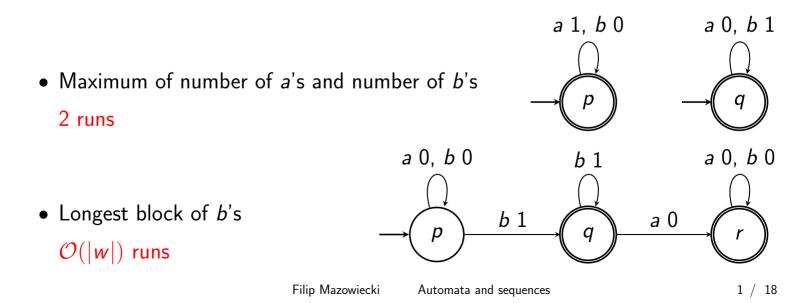
How many accepting runs are there for each word?



 \mathcal{A} an automaton (finite or weighted)

Important: Q states, $I, F \subseteq Q$ initial and final states (for weighted initial, final are $\{q \mid I(q) \neq 0\}$, $\{q \mid F(q) \neq 0\}$)

How many accepting runs are there for each word?



For an automaton \mathcal{A} and a word w

we write Acc(w) for the set of accepting runs of \mathcal{A} on w

For an automaton \mathcal{A} and a word wwe write Acc(w) for the set of accepting runs of \mathcal{A} on w

An automaton is:

Finitely ambiguous if there is a k such that |Acc(w)| ≤ k for all w
 We say it is k-ambiguous
 For k = 1 we say it is unambiguous

For an automaton \mathcal{A} and a word wwe write Acc(w) for the set of accepting runs of \mathcal{A} on w

An automaton is:

 Finitely ambiguous if there is a k such that |Acc(w)| ≤ k for all w We say it is k-ambiguous
 For k = 1 we say it is unambiguous
 Maximum of number of a's and number of b's: 2-ambiguous

For an automaton \mathcal{A} and a word wwe write Acc(w) for the set of accepting runs of \mathcal{A} on w

An automaton is:

- Finitely ambiguous if there is a k such that |Acc(w)| ≤ k for all w We say it is k-ambiguous
 For k = 1 we say it is unambiguous
 Maximum of number of a's and number of b's: 2-ambiguous
- Polynomially ambiguous if there is a polynomial p s.t.
 |Acc(w)| ≤ p(|w|) for all w

We say it is linearly ambiguous if the degree of p is 1, etc...

For an automaton \mathcal{A} and a word wwe write Acc(w) for the set of accepting runs of \mathcal{A} on w

An automaton is:

- Finitely ambiguous if there is a k such that |Acc(w)| ≤ k for all w We say it is k-ambiguous
 For k = 1 we say it is unambiguous
 Maximum of number of a's and number of b's: 2-ambiguous
- Polynomially ambiguous if there is a polynomial p s.t.
 |Acc(w)| ≤ p(|w|) for all w
 We say it is linearly ambiguous if the degree of p is 1, etc...
 Longest block of b's: linearly ambiguous

• Are the inclusions strict?

• Are the inclusions strict?

Depends on the semiring

• Are the inclusions strict?

Depends on the semiring

• For the Boolean semiring It's all equivalent

- Are the inclusions strict? Depends on the semiring
- For the Boolean semiring It's all equivalent
- Next week we will focus on $(\mathbb{Q}, +, \cdot, 0, 1)$ $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

- Are the inclusions strict? Depends on the semiring • For the Boolean semiring It's all equivalent Next week we will focus on $(\mathbb{Q}, +, \cdot, 0, 1)$ $(\mathbb{N}_{+\infty}, \min, +, \infty, \mathbf{0})$ $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$
 - We will focus mostly on two classes

Definition

An automaton \mathcal{A} is trimmed if for every $q \in Q$ there is an initial state $p \in I$ and a final state $r \in F$ s.t. there is a run from p to q and a run from q to r.

Definition

An automaton \mathcal{A} is trimmed if for every $q \in Q$ there is an initial state $p \in I$ and a final state $r \in F$ s.t. there is a run from p to q and a run from q to r.

Remark

By removing states an automaton can be trimmed to an equivalent automaton.

Definition

An automaton \mathcal{A} is trimmed if for every $q \in Q$ there is an initial state $p \in I$ and a final state $r \in F$ s.t. there is a run from p to q and a run from q to r.

Remark

By removing states an automaton can be trimmed to an equivalent automaton.

Proof.

Every run that goes through one of the removed states has value $\mathbb{O}.$

Definition

An automaton \mathcal{A} is trimmed if for every $q \in Q$ there is an initial state $p \in I$ and a final state $r \in F$ s.t. there is a run from p to q and a run from q to r.

Remark

By removing states an automaton can be trimmed to an equivalent automaton.

Proof.

Every run that goes through one of the removed states has value \mathbb{O} .

• We will always implicitly assume that automata are trimmed.

Definition

An automaton \mathcal{A} is trimmed if for every $q \in Q$ there is an initial state $p \in I$ and a final state $r \in F$ s.t. there is a run from p to q and a run from q to r.

Remark

By removing states an automaton can be trimmed to an equivalent automaton.

Proof.

Every run that goes through one of the removed states has value $\mathbb{O}.$

• We will always implicitly assume that automata are trimmed.

We write $p \xrightarrow{w} q$ if there is a run from p to q on word w.

How to check if \mathcal{A} is finitely ambiguous?

How to check if \mathcal{A} is finitely ambiguous?

Theorem (Weber, Seidl 1991)

(1) \mathcal{A} is not finitely ambiguous if and only if

(2) there are two states $p \neq q \in Q$ and a word w s.t.

$$p \xrightarrow{w} p, \ p \xrightarrow{w} q$$
 and $q \xrightarrow{w} q$

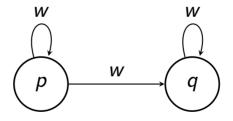
How to check if A is finitely ambiguous?

Theorem (Weber, Seidl 1991)

(1) \mathcal{A} is not finitely ambiguous if and only if (2) there are two states $p \neq q \in Q$ and a word w s.t. 14/ w q

$$p \xrightarrow{n} p, p \xrightarrow{n} q$$
 and $q \xrightarrow{n} q$

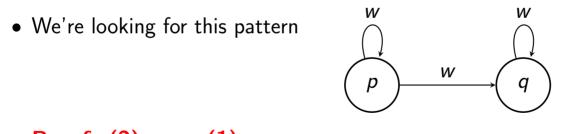
• We're looking for this pattern



How to check if \mathcal{A} is finitely ambiguous?

Theorem (Weber, Seidl 1991)

(1) A is not finitely ambiguous if and only if
(2) there are two states p ≠ q ∈ Q and a word w s.t. p → p, p → q and q → q

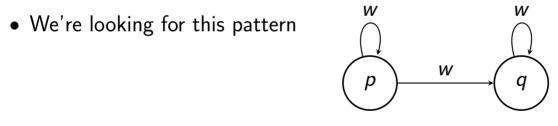


Proof. (2) \implies (1) There is $a \in I$ and v_a s.t. $a \xrightarrow{v_a} p$ and $b \in F$ and v_b s.t. $q \xrightarrow{v_b} b$

How to check if \mathcal{A} is finitely ambiguous?

Theorem (Weber, Seidl 1991)

(1) \mathcal{A} is not finitely ambiguous if and only if (2) there are two states $p \neq q \in Q$ and a word w s.t. $p \xrightarrow{w} p, p \xrightarrow{w} q$ and $q \xrightarrow{w} q$



Proof. (2) \implies (1) There is $a \in I$ and v_a s.t. $a \xrightarrow{v_a} p$ and $b \in F$ and v_b s.t. $q \xrightarrow{v_b} b$ Then $|Acc(v_a w^n v_b)| \ge n - 1$.

• A strongly connected component is $Q_i \subseteq Q$ s.t. for all $p, q \in Q$ there are v_1, v_2 : $p \xrightarrow{v_1} q$ and $q \xrightarrow{v_2} p$

• A strongly connected component is $Q_i \subseteq Q$ s.t. for all $p, q \in Q$ there are v_1, v_2 : $p \xrightarrow{v_1} q$ and $q \xrightarrow{v_2} p$

Lemma

 $Q = Q_1 \cup Q_2 \ldots \cup Q_m$, where Q_i are strongly connected components. Moreover, if $p \in Q_i$ and $q \in Q_j$ and there is a word w s.t. $p \xrightarrow{w} q$ then $i \leq j$.

• A strongly connected component is $Q_i \subseteq Q$ s.t. for all $p, q \in Q$ there are v_1, v_2 : $p \xrightarrow{v_1} q$ and $q \xrightarrow{v_2} p$

Lemma

 $Q = Q_1 \cup Q_2 \ldots \cup Q_m$, where Q_i are strongly connected components. Moreover, if $p \in Q_i$ and $q \in Q_j$ and there is a word w s.t. $p \xrightarrow{w} q$ then $i \leq j$.

Proof.

We put two states p, q in the same $Q_a \subseteq Q$ iff there is $p \xrightarrow{v_1} q$ and $q \xrightarrow{v_2} p$.

• A strongly connected component is $Q_i \subseteq Q$ s.t. for all $p, q \in Q$ there are v_1, v_2 : $p \xrightarrow{v_1} q$ and $q \xrightarrow{v_2} p$

Lemma

 $Q = Q_1 \cup Q_2 \ldots \cup Q_m$, where Q_i are strongly connected components. Moreover, if $p \in Q_i$ and $q \in Q_j$ and there is a word w s.t. $p \xrightarrow{w} q$ then $i \leq j$.

Proof.

We put two states p, q in the same $Q_a \subseteq Q$ iff there is $p \xrightarrow{v_1} q$ and $q \xrightarrow{v_2} p$. Let Q_a for $a \in A$ be the set of subsets. Define graph G with edges $Q_a \rightarrow Q_b$ if there are $p \in Q_a$ and $q \in Q_b$ s.t. $p \xrightarrow{v} q$.

• A strongly connected component is $Q_i \subseteq Q$ s.t. for all $p, q \in Q$ there are v_1, v_2 : $p \xrightarrow{v_1} q$ and $q \xrightarrow{v_2} p$

Lemma

 $Q = Q_1 \cup Q_2 \ldots \cup Q_m$, where Q_i are strongly connected components. Moreover, if $p \in Q_i$ and $q \in Q_j$ and there is a word w s.t. $p \xrightarrow{w} q$ then $i \leq j$.

Proof.

We put two states p, q in the same $Q_a \subseteq Q$ iff there is $p \xrightarrow{v_1} q$ and $q \xrightarrow{v_2} p$. Let Q_a for $a \in A$ be the set of subsets. Define graph G with edges $Q_a \rightarrow Q_b$ if there are $p \in Q_a$ and $q \in Q_b$ s.t. $p \xrightarrow{v} q$. G is closed under transitivity and antisymmetric

• A strongly connected component is $Q_i \subseteq Q$ s.t. for all $p, q \in Q$ there are v_1, v_2 : $p \xrightarrow{v_1} q$ and $q \xrightarrow{v_2} p$

Lemma

 $Q = Q_1 \cup Q_2 \ldots \cup Q_m$, where Q_i are strongly connected components. Moreover, if $p \in Q_i$ and $q \in Q_j$ and there is a word w s.t. $p \xrightarrow{w} q$ then $i \leq j$.

Proof.

We put two states p, q in the same $Q_a \subseteq Q$ iff there is $p \xrightarrow{v_1} q$ and $q \xrightarrow{v_2} p$. Let Q_a for $a \in A$ be the set of subsets. Define graph G with edges $Q_a \rightarrow Q_b$ if there are $p \in Q_a$ and $q \in Q_b$ s.t. $p \xrightarrow{v} q$. G is closed under transitivity and antisymmetric

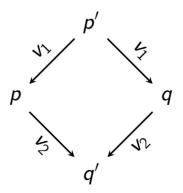
So sets G is a DAG and Q_a can be topologically sorted

• Case one: there is a Q_i , states $p', q' \in Q_i$ and a word v s.t.

there are two different runs $p' \xrightarrow{v} q'$

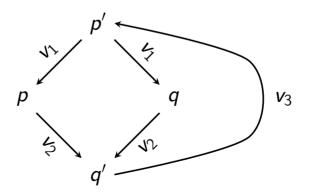
 Case one: there is a Q_i, states p', q' ∈ Q_i and a word v s.t. there are two different runs p' → q'

Let $v = v_1 v_2$ and $p \neq q$



 Case one: there is a Q_i, states p', q' ∈ Q_i and a word v s.t. there are two different runs p' → q'

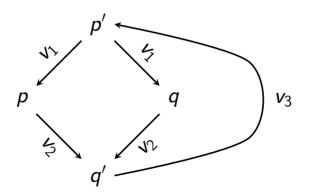
Let $v = v_1 v_2$ and $p \neq q$

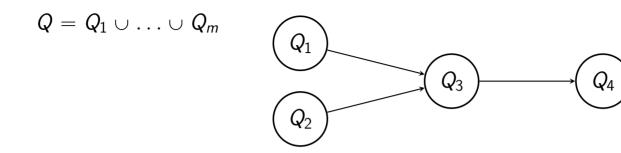


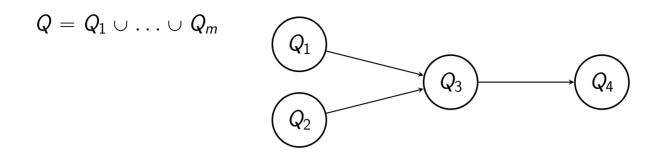
 Case one: there is a Q_i, states p', q' ∈ Q_i and a word v s.t. there are two different runs p' → q'

Let
$$v = v_1 v_2$$
 and $p \neq q$

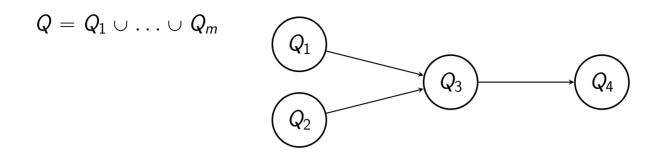
- Let $w = v_2 v_3 v_1$
 - $p \xrightarrow{w} p, p \xrightarrow{w} q, q \xrightarrow{w} q$





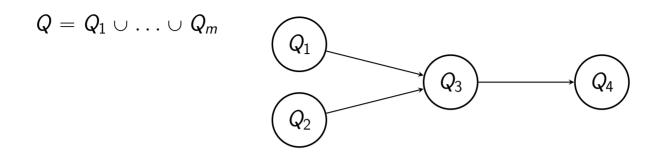


• Notice that every accepting run starts in some Q_i and ends in some Q_j through some other Q_{l_1}, \ldots, Q_{l_s}



• Notice that every accepting run starts in some Q_i and ends in some Q_j through some other Q_{l_1}, \ldots, Q_{l_s}

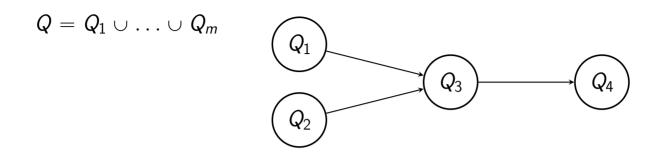
Example: From Q_1 to Q_4 through Q_3



• Notice that every accepting run starts in some Q_i and ends in some Q_j through some other Q_{l_1}, \ldots, Q_{l_s}

Example: From Q_1 to Q_4 through Q_3

 We can decompose the sets of accepting runs into M ⊆ {1,..., m} where M = {i₁,..., i_s} and i₁ < i₂ < ... < i_s means that a run starts in Q_{i1} goes through Q_{i2},... Q_{is-1} to Q_{is}



• Notice that every accepting run starts in some Q_i and ends in some Q_j through some other Q_{l_1}, \ldots, Q_{l_s}

Example: From Q_1 to Q_4 through Q_3

- We can decompose the sets of accepting runs into M ⊆ {1,..., m} where M = {i₁,..., i_s} and i₁ < i₂ < ... < i_s means that a run starts in Q_{i1} goes through Q_{i2},... Q_{is-1} to Q_{is}
- Note: the number of such M is bounded by $2^{|Q|}$.

$$Q = Q_1 \cup Q_2 \cup \ldots \cup Q_m$$

When $M = \{i_1, \ldots, i_k\}$ write Q_1, \ldots, Q_k instead of Q_{i_1}, \ldots, Q_{i_k}

$$Q = Q_1 \cup Q_2 \cup \ldots \cup Q_m$$

When $M = \{i_1, \ldots, i_k\}$ write $Q_1, \ldots Q_k$ instead of $Q_{i_1}, \ldots Q_{i_k}$

Definition

Let
$$x = x_1 \dots x_s \in \Sigma^*$$
. The graph $G_M(x) = (V, E)$ is defined as
 $V = \{(q, j) \in (Q_1 \cup \dots \cup Q_k) \times \{0, \dots, s\} \mid$
 $\exists q_l \in I \cap Q_1, q_F \in F \cap Q_k : q_l \xrightarrow{x_1 \dots x_j} q, q \xrightarrow{x_{j+1} \dots x_s} q_F\}$
 $E = \{(p, j - 1) \rightarrow (q, j) \mid p \xrightarrow{x_j} q\}$

$$Q = Q_1 \cup Q_2 \cup \ldots \cup Q_m$$

When $M = \{i_1, \ldots, i_k\}$ write $Q_1, \ldots Q_k$ instead of $Q_{i_1}, \ldots Q_{i_k}$

Definition

Let
$$x = x_1 \dots x_s \in \Sigma^*$$
. The graph $G_M(x) = (V, E)$ is defined as
 $V = \{(q, j) \in (Q_1 \cup \dots \cup Q_k) \times \{0, \dots, s\} \mid$
 $\exists q_l \in I \cap Q_1, q_F \in F \cap Q_k : q_l \xrightarrow{x_1 \dots x_j} q, q \xrightarrow{x_{j+1} \dots x_s} q_F\}$
 $E = \{(p, j - 1) \rightarrow (q, j) \mid p \xrightarrow{x_j} q\}$

• Case 2: for all *i* if $p', q' \in Q_i$ then for every *v* at most one run $p' \xrightarrow{v} q'$

$$Q = Q_1 \cup Q_2 \cup \ldots \cup Q_m$$

When $M = \{i_1, \ldots, i_k\}$ write $Q_1, \ldots Q_k$ instead of $Q_{i_1}, \ldots Q_{i_k}$

Definition

Let
$$x = x_1 \dots x_s \in \Sigma^*$$
. The graph $G_M(x) = (V, E)$ is defined as
 $V = \{(q, j) \in (Q_1 \cup \dots \cup Q_k) \times \{0, \dots, s\} \mid$
 $\exists q_l \in I \cap Q_1, q_F \in F \cap Q_k : q_l \xrightarrow{x_1 \dots x_j} q, q \xrightarrow{x_{j+1} \dots x_s} q_F\}$
 $E = \{(p, j - 1) \rightarrow (q, j) \mid p \xrightarrow{x_j} q\}$

• Case 2: for all *i* if $p', q' \in Q_i$ then for every *v* at most one run $p' \xrightarrow{v} q'$

If \mathcal{A} is not finitely ambiguous there is a word $x_1 \dots x_s$ s.t. $Acc(x) \ge N$ For any N (in the end we choose N big enough)

$$Q = Q_1 \cup Q_2 \cup \ldots \cup Q_m$$

When $M = \{i_1, \ldots, i_k\}$ write $Q_1, \ldots Q_k$ instead of $Q_{i_1}, \ldots Q_{i_k}$

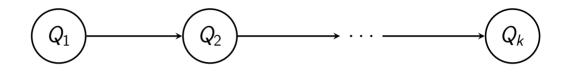
Definition

Let
$$x = x_1 \dots x_s \in \Sigma^*$$
. The graph $G_M(x) = (V, E)$ is defined as
 $V = \{(q, j) \in (Q_1 \cup \dots \cup Q_k) \times \{0, \dots, s\} \mid$
 $\exists q_l \in I \cap Q_1, q_F \in F \cap Q_k : q_l \xrightarrow{x_1 \dots x_j} q, q \xrightarrow{x_{j+1} \dots x_s} q_F\}$
 $E = \{(p, j - 1) \rightarrow (q, j) \mid p \xrightarrow{x_j} q\}$

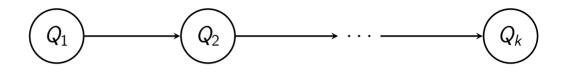
• Case 2: for all *i* if $p', q' \in Q_i$ then for every *v* at most one run $p' \xrightarrow{v} q'$

If \mathcal{A} is not finitely ambiguous there is a word $x_1 \dots x_s$ s.t. $Acc(x) \ge N$ For any N (in the end we choose N big enough) Then there is an M s.t. the number of accepting runs by M is at least $\frac{N}{2^{|Q|}}$

 $M = \{i_1, \ldots, i_k\}, \quad x = x_1 \ldots x_s, \quad Acc(x) \text{ from } Q_1 \text{ to } Q_k \text{ big}$



 $M = \{i_1, \ldots, i_k\}, \quad x = x_1 \ldots x_s, \quad Acc(x) \text{ from } Q_1 \text{ to } Q_k \text{ big}$



• for all l = 1, ..., k - 1 let $D_l(x) \subseteq E$ s.t. $(p, j - 1) \rightarrow (q, j) \in D_l(x)$ if $p \in Q_l$ and $q \in Q_{l+1}$

 $M = \{i_1, \ldots, i_k\}, \quad x = x_1 \ldots x_s, \quad Acc(x) \text{ from } Q_1 \text{ to } Q_k \text{ big}$

- for all l = 1, ..., k 1 let $D_l(x) \subseteq E$ s.t. $(p, j - 1) \rightarrow (q, j) \in D_l(x)$ if $p \in Q_l$ and $q \in Q_{l+1}$
- Number of accepting runs on x is bounded by

$$|Q_1| \cdot |D_1| \cdot |D_2| \cdot \ldots \cdot |D_{k-1}| \cdot |Q_k|$$

 $M = \{i_1, \ldots, i_k\}, \quad x = x_1 \ldots x_s, \quad Acc(x) \text{ from } Q_1 \text{ to } Q_k \text{ big}$

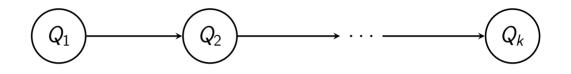


- for all $l = 1, \dots, k 1$ let $D_l(x) \subseteq E$ s.t. $(p, j - 1) \rightarrow (q, j) \in D_l(x)$ if $p \in Q_l$ and $q \in Q_{l+1}$
- Number of accepting runs on x is bounded by

 $|Q_1| \cdot |D_1| \cdot |D_2| \cdot \ldots \cdot |D_{k-1}| \cdot |Q_k|$

• So there is I s.t. $|D_I|$ big

 $M = \{i_1, \ldots, i_k\}, \quad x = x_1 \ldots x_s, \quad Acc(x) \text{ from } Q_1 \text{ to } Q_k \text{ big}$



- for all $l = 1, \dots, k 1$ let $D_l(x) \subseteq E$ s.t. $(p, j - 1) \rightarrow (q, j) \in D_l(x)$ if $p \in Q_l$ and $q \in Q_{l+1}$
- Number of accepting runs on x is bounded by $|Q_1| \cdot |D_1| \cdot |D_2| \cdot \ldots \cdot |D_{k-1}| \cdot |Q_k|$
- So there is I s.t. $|D_I|$ big
- We choose N s.t. $|D_I| > 2^{|Q|}$

 $(p, j-1) \rightarrow (q, j) \in D_l(x) \text{ if } p \in Q_l \text{ and } q \in Q_{l+1}$, $|D_l| > 2^{|Q|}$, $x = x_1 \dots x_s$

 $(p,j-1) \rightarrow (q,j) \in D_l(x) \text{ if } p \in Q_l \text{ and } q \in Q_{l+1}$, $|D_l| > 2^{|Q|}$, $x = x_1 \dots x_s$

• Let $J \subseteq \{1, ..., s\}$ so $D_{I}(x) = \{(p, j - 1) \rightarrow (q, j) \mid j \in J\}$

 $(p, j-1) \rightarrow (q, j) \in D_l(x) \text{ if } p \in Q_l \text{ and } q \in Q_{l+1},, \quad |D_l| > 2^{|Q|}, \quad x = x_1 \dots x_s$

- Let $J \subseteq \{1, ..., s\}$ so $D_I(x) = \{(p, j 1) \rightarrow (q, j) \mid j \in J\}$
- For every $j \in J$ let $A_j = \{r \mid (r,j) \in V\}$

$$(p, j-1)
ightarrow (q, j) \in D_l(x)$$
 if $p \in Q_l$ and $q \in Q_{l+1}$, $|D_l| > 2^{|Q|}$, $x = x_1 \dots x_s$

- Let $J \subseteq \{1, ..., s\}$ so $D_{I}(x) = \{(p, j 1) \rightarrow (q, j) \mid j \in J\}$
- For every $j \in J$ let $A_j = \{r \mid (r,j) \in V\}$
- Since $|D_l| > 2^{|Q|}$ there exist $j_1 < j_2$ s.t. $A_{j_1} = A_{j_2}$. We write $A = A_{j_1} = A_{j_2}$, $y_1 = x_{j_1+1} \dots x_{j_2-1}$, $a_1 = x_{j_2}$ and $y = y_1 a_1$

$$(p, j-1)
ightarrow (q, j) \in D_l(x)$$
 if $p \in Q_l$ and $q \in Q_{l+1}$, $|D_l| > 2^{|Q|}$, $x = x_1 \dots x_s$

- Let $J \subseteq \{1, ..., s\}$ so $D_l(x) = \{(p, j-1) \to (q, j) \mid j \in J\}$
- For every $j \in J$ let $A_j = \{r \mid (r,j) \in V\}$
- Since $|D_i| > 2^{|Q|}$ there exist $j_1 < j_2$ s.t. $A_{j_1} = A_{j_2}$. We write $A = A_{j_1} = A_{j_2}$, $y_1 = x_{j_1+1} \dots x_{j_2-1}$, $a_1 = x_{j_2}$ and $y = y_1 a_1$
- There are: $q_l \in Q_l, p_{l+1} \in Q_{l+1}$, s.t. $q_l \xrightarrow{a_1} p_{l+1}$ and $r \in A$ s.t. $r \xrightarrow{y_1} q_l$

$$(p, j-1)
ightarrow (q, j) \in D_l(x)$$
 if $p \in Q_l$ and $q \in Q_{l+1}$, $|D_l| > 2^{|Q|}$, $x = x_1 \dots x_s$

- Let $J \subseteq \{1, ..., s\}$ so $D_l(x) = \{(p, j-1) \to (q, j) \mid j \in J\}$
- For every $j \in J$ let $A_j = \{r \mid (r,j) \in V\}$
- Since $|D_i| > 2^{|Q|}$ there exist $j_1 < j_2$ s.t. $A_{j_1} = A_{j_2}$. We write $A = A_{j_1} = A_{j_2}$, $y_1 = x_{j_1+1} \dots x_{j_2-1}$, $a_1 = x_{j_2}$ and $y = y_1 a_1$
- There are: $q_l \in Q_l, p_{l+1} \in Q_{l+1}$, s.t. $q_l \xrightarrow{a_1} p_{l+1}$ and $r \in A$ s.t. $r \xrightarrow{y_1} q_l$

And $\forall s \in A \ \exists r \in A: \ r \xrightarrow{y} s$ and $\forall r \in A \ \exists s \in A: \ r \xrightarrow{y} s$

$$(p, j-1)
ightarrow (q, j) \in D_l(x)$$
 if $p \in Q_l$ and $q \in Q_{l+1}$, $|D_l| > 2^{|Q|}$, $x = x_1 \dots x_s$

- Let $J \subseteq \{1, ..., s\}$ so $D_I(x) = \{(p, j-1) \to (q, j) \mid j \in J\}$
- For every $j \in J$ let $A_j = \{r \mid (r,j) \in V\}$
- Since $|D_i| > 2^{|Q|}$ there exist $j_1 < j_2$ s.t. $A_{j_1} = A_{j_2}$. We write $A = A_{j_1} = A_{j_2}$, $y_1 = x_{j_1+1} \dots x_{j_2-1}$, $a_1 = x_{j_2}$ and $y = y_1 a_1$
- There are: $q_l \in Q_l, p_{l+1} \in Q_{l+1}$, s.t. $q_l \xrightarrow{a_1} p_{l+1}$ and $r \in A$ s.t. $r \xrightarrow{y_1} q_l$

And $\forall s \in A \exists r \in A: r \xrightarrow{y} s$ and $\forall r \in A \exists s \in A: r \xrightarrow{y} s$

• There is a sequence
$$r_i$$
 s.t. $r_1 \xrightarrow{y_1} q_l$ and $r_i \xrightarrow{y} r_{i-1}$
For some i_1 , i_2 we get $r_{i_1} = r_{i_1+i_2} = p$

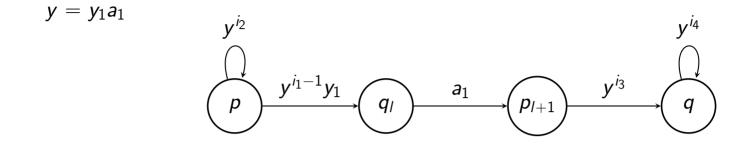
$$(p,j-1)
ightarrow (q,j) \in D_l(x)$$
 if $p \in Q_l$ and $q \in Q_{l+1}$, $|D_l| > 2^{|Q|}$, $x = x_1 \dots x_s$

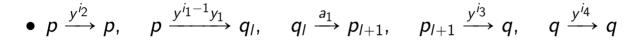
- Let $J \subseteq \{1, ..., s\}$ so $D_l(x) = \{(p, j-1) \to (q, j) \mid j \in J\}$
- For every $j \in J$ let $A_j = \{r \mid (r,j) \in V\}$
- Since $|D_i| > 2^{|Q|}$ there exist $j_1 < j_2$ s.t. $A_{j_1} = A_{j_2}$. We write $A = A_{j_1} = A_{j_2}$, $y_1 = x_{j_1+1} \dots x_{j_2-1}$, $a_1 = x_{j_2}$ and $y = y_1 a_1$
- There are: $q_l \in Q_l, p_{l+1} \in Q_{l+1}$, s.t. $q_l \xrightarrow{a_1} p_{l+1}$ and $r \in A$ s.t. $r \xrightarrow{y_1} q_l$

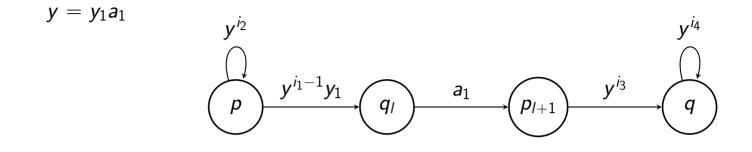
And $\forall s \in A \exists r \in A: r \xrightarrow{y} s$ and $\forall r \in A \exists s \in A: r \xrightarrow{y} s$

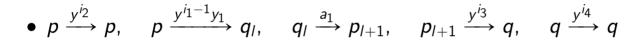
• There is a sequence
$$r_i$$
 s.t. $r_1 \xrightarrow{y_1} q_i$ and $r_i \xrightarrow{y} r_{i-1}$
For some i_1 , i_2 we get $r_{i_1} = r_{i_1+i_2} = p$

• Similarly a sequence s_i : $s_0 = p_{l+1}$ and $s_{i-1} \xrightarrow{y} s_i$, so $s_{i_3} = s_{i_3+i_4} = q$

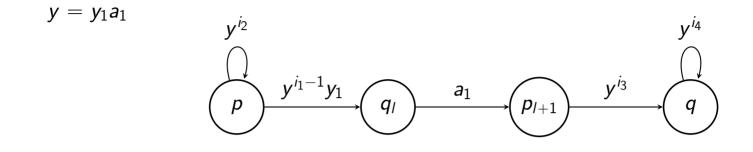








• Given i_1 , i_2 we can choose i_3 and i_4 s.t. $i_1 + i_3 \equiv 0 \mod i_2 \cdot i_4$ let j s.t. $i_1 + i_3 = j(i_2 \cdot i_4)$



•
$$p \xrightarrow{y^{i_2}} p$$
, $p \xrightarrow{y^{i_1-1}y_1} q_l$, $q_l \xrightarrow{a_1} p_{l+1}$, $p_{l+1} \xrightarrow{y^{i_3}} q$, $q \xrightarrow{y^{i_4}} q$

• Given i_1 , i_2 we can choose i_3 and i_4 s.t. $i_1 + i_3 \equiv 0 \mod i_2 \cdot i_4$ let j s.t. $i_1 + i_3 = j(i_2 \cdot i_4)$

•
$$p \neq q$$
, let $w = y^{j \cdot i_2 \cdot i_4}$

$$p \xrightarrow{w} p, \ p \xrightarrow{w} q, \ q \xrightarrow{w} q$$

How to check if ${\mathcal A}$ is polynomially ambiguous?

How to check if \mathcal{A} is polynomially ambiguous?

Theorem (Weber, Seidl 1991)

(1) \mathcal{A} is not polynomially ambiguous if and only if

(2) there is a state $p \in Q$ and a word w s.t. there are two runs $p \xrightarrow{w} p$

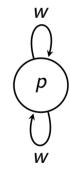
How to check if \mathcal{A} is polynomially ambiguous?

Theorem (Weber, Seidl 1991)

(1) \mathcal{A} is not polynomially ambiguous if and only if

(2) there is a state $p \in Q$ and a word w s.t. there are two runs $p \xrightarrow{w} p$

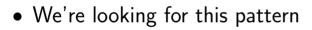
• We're looking for this pattern



How to check if \mathcal{A} is polynomially ambiguous?

Theorem (Weber, Seidl 1991)

(1) \mathcal{A} is not polynomially ambiguous if and only if (2) there is a state $p \in Q$ and a word w s.t. there are two runs $p \xrightarrow{w} p$



Proof. (2) \implies (1)

There is $a \in I$ and v_1 s.t. $a \xrightarrow{v_a} p$ and $b \in F$ and v_2 s.t. $p \xrightarrow{v_b} b$

w

р

W

How to check if \mathcal{A} is polynomially ambiguous?

Theorem (Weber, Seidl 1991)

(1) \mathcal{A} is not polynomially ambiguous if and only if (2) there is a state $p \in Q$ and a word w s.t. there are two runs $p \xrightarrow{w} p$

- We're looking for this pattern
 - Proof. (2) \implies (1)

There is $a \in I$ and v_1 s.t. $a \xrightarrow{v_a} p$ and $b \in F$ and v_2 s.t. $p \xrightarrow{v_b} b$

Then $|Acc(v_a w^n v_b)| \ge 2^n$.

w

р

W

No pattern \implies polynomially ambiguous

For every state $p \in Q$ and a word w there is at most one run $p \xrightarrow{w} p$

No pattern \implies polynomially ambiguous

For every state $p \in Q$ and a word w there is at most one run $p \xrightarrow{w} p$

 Then in every strongly connected component there is at most one p → q (this was "Case 2" in the previous proof)

No pattern \implies polynomially ambiguous

For every state $p \in Q$ and a word w there is at most one run $p \xrightarrow{w} p$

- Then in every strongly connected component there is at most one p → q (this was "Case 2" in the previous proof)
- For every $x = x_1 \dots x_s$ the number of runs was bounded by $2^{|Q|} \cdot |Q_1| \cdot |D_1| \cdot |D_2| \cdot \dots \cdot |D_{k-1}| \cdot |Q_k|$

(see slide 10)

No pattern \implies polynomially ambiguous

For every state $p \in Q$ and a word w there is at most one run $p \xrightarrow{w} p$

- Then in every strongly connected component there is at most one p → q (this was "Case 2" in the previous proof)
- For every $x = x_1 \dots x_s$ the number of runs was bounded by $2^{|Q|} \cdot |Q_1| \cdot |D_1| \cdot |D_2| \cdot \dots \cdot |D_{k-1}| \cdot |Q_k|$ (see slide 10)
- It remains to observe that $|D_i| \leqslant |Q|^2 \cdot s$

No pattern \implies polynomially ambiguous

For every state $p \in Q$ and a word w there is at most one run $p \xrightarrow{w} p$

- Then in every strongly connected component there is at most one p → q (this was "Case 2" in the previous proof)
- For every $x = x_1 \dots x_s$ the number of runs was bounded by $2^{|Q|} \cdot |Q_1| \cdot |D_1| \cdot |D_2| \cdot \dots \cdot |D_{k-1}| \cdot |Q_k|$ (see slide 10)
- It remains to observe that $|D_i| \leq |Q|^2 \cdot s$
- Then the number of runs is bounded by a polynomial of degree k-1

Lemma (tutorials)

If A is finitely ambiguous then it is k-ambiguous for some k bounded exponentially in |Q|.

Lemma (tutorials)

If A is finitely ambiguous then it is k-ambiguous for some k bounded exponentially in |Q|.

Theorem (Weber 1994)

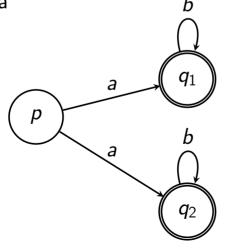
If \mathcal{A} is finitely ambiguous then it is equivalent to a finite union of unambiguous automata

Lemma (tutorials)

If A is finitely ambiguous then it is k-ambiguous for some k bounded exponentially in |Q|.

Theorem (Weber 1994)

If \mathcal{A} is finitely ambiguous then it is equivalent to a finite union of unambiguous automata b

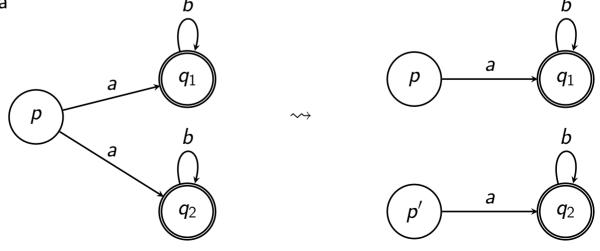


Lemma (tutorials)

If \mathcal{A} is finitely ambiguous then it is k-ambiguous for some k bounded exponentially in |Q|.

Theorem (Weber 1994)

If ${\mathcal A}$ is finitely ambiguous then it is equivalent to a finite union of unambiguous



Filip Mazowiecki

Automata and sequences

Proof (sketch).

An active run is a run that not necessarily ends in an accepting state

Proof (sketch).

An active run is a run that not necessarily ends in an accepting state

By the previous Lemma there is a bound on active runs for every word
 kn: where k is the bound on the ambiguity and |Q| = n.

Proof (sketch).

An active run is a run that not necessarily ends in an accepting state

- By the previous Lemma there is a bound on active runs for every word
 kn: where k is the bound on the ambiguity and |Q| = n.
- Assume that $Q = \{1, 2, ..., n\}$ (we will use the order)

Proof (sketch).

An active run is a run that not necessarily ends in an accepting state

- By the previous Lemma there is a bound on active runs for every word
 kn: where k is the bound on the ambiguity and |Q| = n.
- Assume that $Q = \{1, 2, ..., n\}$ (we will use the order)
- Consider the deterministic automaton B with states that are the set of all partial functions:

$$f:\{1,2,\ldots,kn\}\to Q$$

Proof (sketch).

An active run is a run that not necessarily ends in an accepting state

- By the previous Lemma there is a bound on active runs for every word
 kn: where k is the bound on the ambiguity and |Q| = n.
- Assume that $Q = \{1, 2, ..., n\}$ (we will use the order)
- Consider the deterministic automaton ${\cal B}$ with states that are the set of all partial functions:

$$f:\{1,2,\ldots,kn\} \to Q$$

- ${\mathcal B}$ keeps track of all active runs in ${\mathcal A}$

• \mathcal{B} states are partial functions $f : \{1, 2, \dots, kn\} \rightarrow Q$

The size of the domain is always the number of runs

- B states are partial functions f : {1, 2, ..., kn} → Q
 The size of the domain is always the number of runs
- Initially the domain is {1,..., |I|} and the images are I ⊆ Q
 We use the order on Q for B to be deterministic

- B states are partial functions f : {1, 2, ..., kn} → Q
 The size of the domain is always the number of runs
- Initially the domain is {1,..., |I|} and the images are I ⊆ Q
 We use the order on Q for B to be deterministic
- Then for every transition in A we update the states in B
 Given a partial function f : {1, 2, ..., kn} → Q
 we get g : {1, 2, ..., kn} → Q

- B states are partial functions f : {1, 2, ..., kn} → Q
 The size of the domain is always the number of runs
- Initially the domain is {1,..., |I|} and the images are I ⊆ Q
 We use the order on Q for B to be deterministic
- Then for every transition in A we update the states in B
 Given a partial function f : {1, 2, ..., kn} → Q
 we get g : {1, 2, ..., kn} → Q
- Then A × B has the same accepting runs as A but with extra information Accepting states etc are when they are accepting in the A component

• $\mathcal{A}\times\mathcal{B}$ is equivalent to \mathcal{A} but with more information

- $\mathcal{A}\times\mathcal{B}$ is equivalent to \mathcal{A} but with more information
- In a similar way we add another component of states Partial functions $f : Q \rightarrow \{1, \dots, kn\}$

- $\mathcal{A}\times\mathcal{B}$ is equivalent to \mathcal{A} but with more information
- In a similar way we add another component of states Partial functions $f: Q \rightarrow \{1, \dots, kn\}$
- This adds the information, which {1,..., kn} has the current run in A
 It can be extracted when updating B

- $\mathcal{A}\times\mathcal{B}$ is equivalent to \mathcal{A} but with more information
- In a similar way we add another component of states Partial functions $f: Q \rightarrow \{1, \dots, kn\}$
- This adds the information, which {1,..., kn} has the current run in A
 It can be extracted when updating B
- The final automata are divided into kn unambiguous automata Restricting the accepting states to accepting in A and i ∈ {1,..., kn} in the final component