Lecture 3

Ambiguity of automata

Powered by BeamerikZ


https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

Number of accepting runs

A an automaton (finite or weighted)
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Important: @ states, /. F < @ initial and final states
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Number of accepting runs
A an automaton (finite or weighted)

Important: @ states, /. F < @ initial and final states
(for weighted initial, final are {q | /(q) # 0}, {q| F(q) # 0})

How many accepting runs are there for each word?

al bo0 a0 bl

e Maximum of number of a's and number of b's
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Number of accepting runs
A an automaton (finite or weighted)

Important: @ states, /. F < @ initial and final states
(for weighted initial, final are {q | /(q) # 0}, {q| F(q) # 0})

How many accepting runs are there for each word?

al bo0 a0 bl

e Maximum of number of a's and number of b's
2 runs
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A an automaton (finite or weighted)

Number of accepting runs

Important: @ states, /. F < @ initial and final states
(for weighted initial, final are {q | /(q) # 0}, {q| F(q) # 0})

How many accepting runs are there for each word?

e Maximum of number of a's and number of b's

2 runs

e Longest block of b's
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A an automaton (finite or weighted)

Number of accepting runs

Important: @ states, /. F < @ initial and final states
(for weighted initial, final are {q | /(q) # 0}, {q| F(q) # 0})

How many accepting runs are there for each word?

e Maximum of number of a's and number of b's

2 runs

e Longest block of b's
O(|w|) runs
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Ambiguity subclasses

For an automaton A and a word w

we write Acc(w) for the set of accepting runs of A on w
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Ambiguity subclasses

For an automaton A and a word w

we write Acc(w) for the set of accepting runs of A on w
An automaton is:
e Finitely ambiguous if there is a k such that |Acc(w)| < k for all w

We say it is k-ambiguous

For k = 1 we say it is unambiguous
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Ambiguity subclasses

For an automaton A and a word w

we write Acc(w) for the set of accepting runs of A on w
An automaton is:

e Finitely ambiguous if there is a k such that |Acc(w)| < k for all w
We say it is k-ambiguous

For k = 1 we say it is unambiguous

Maximum of number of a's and number of b's: 2-ambiguous
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Ambiguity subclasses

For an automaton A and a word w

we write Acc(w) for the set of accepting runs of A on w

An automaton is:

e Finitely ambiguous if there is a k such that |Acc(w)| < k for all w
We say it is k-ambiguous
For k = 1 we say it is unambiguous

Maximum of number of a's and number of b's: 2-ambiguous

e Polynomially ambiguous if there is a polynomial p s.t.
|Acc(w)| < p(|w]) for all w
We say it is linearly ambiguous if the degree of p is 1, etc. ..
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Ambiguity subclasses

For an automaton A and a word w

we write Acc(w) for the set of accepting runs of A on w

An automaton is:

e Finitely ambiguous if there is a k such that |Acc(w)| < k for all w
We say it is k-ambiguous
For k = 1 we say it is unambiguous

Maximum of number of a's and number of b's: 2-ambiguous

e Polynomially ambiguous if there is a polynomial p s.t.
|Acc(w)| < p(|w]) for all w
We say it is linearly ambiguous if the degree of p is 1, etc. ..

Longest block of b's: linearly ambiguous
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Hierarchy of classes for weighted automata
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Hierarchy of classes for weighted automata

e Are the inclusions strict?
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Hierarchy of classes for weighted automata

e Are the inclusions strict?

Depends on the semiring
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Hierarchy of classes for weighted automata

e Are the inclusions strict? Weighted automata (WA)
Ul
Depends on the semiring Polynomially ambiguous WA
Ul
e For the Boolean semiring Finitely ambiguous WA
It's all equivalent ul
Unambiguous WA
Ul

Deterministic WA
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Hierarchy of classes for weighted automata

e Are the inclusions strict? Weighted automata (WA)
Ul
Depends on the semiring Polynomially ambiguous WA
Ul
e For the Boolean semiring Finitely ambiguous WA
It's all equivalent Ul
Unambiguous WA
e Next week we will focus on ul
(Q,+,-,0,1) Deterministic WA

(N, min, +,00,0)
(N_, max, +, —00,0)
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Hierarchy of classes for weighted automata

e Are the inclusions strict?

Depends on the semiring

e For the Boolean semiring

It's all equivalent

e Next week we will focus on

<Q7 +7 " 07 1)
(N, min, +,00,0)
(N_, max, +, —00,0)

e We will focus mostly on two classes
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Trimmed automata
Definition

An automaton A is trimmed if for every g € @ there is an initial state p € /

and a final state r € F s.t. there is a run from p to g and a run from g to r.

Filip Mazowiecki Automata and sequences 4/ 18



Trimmed automata
Definition
An automaton A is trimmed if for every g € @ there is an initial state p € /

and a final state r € F s.t. there is a run from p to g and a run from g to r.

Remark

By removing states an automaton can be trimmed to an equivalent automaton.
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Trimmed automata

Definition
An automaton A is trimmed if for every g € @ there is an initial state p € /

and a final state r € F s.t. there is a run from p to g and a run from g to r.

Remark

By removing states an automaton can be trimmed to an equivalent automaton.

Proof.

Every run that goes through one of the removed states has value O,
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Trimmed automata

Definition
An automaton A is trimmed if for every g € @ there is an initial state p € /

and a final state r € F s.t. there is a run from p to g and a run from g to r.

Remark

By removing states an automaton can be trimmed to an equivalent automaton.

Proof.

Every run that goes through one of the removed states has value O,

e We will always implicitly assume that automata are trimmed.

Filip Mazowiecki Automata and sequences 4/ 18



Trimmed automata

Definition
An automaton A is trimmed if for every g € @ there is an initial state p € /

and a final state r € F s.t. there is a run from p to g and a run from g to r.

Remark
By removing states an automaton can be trimmed to an equivalent automaton.
Proof.
Every run that goes through one of the removed states has value O,

e We will always implicitly assume that automata are trimmed.

We write p — q if there is a run from p to g on word w.
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Finitely ambiguous class

How to check if A is finitely ambiguous?
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Finitely ambiguous class
How to check if A is finitely ambiguous?
Theorem (Weber, Seidl 1991)
(1) A is not finitely ambiguous if and only if

(2) there are two states p # g € Q and a word w s.t.
w w w
p—p p—qgandg—q
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Finitely ambiguous class
How to check if A is finitely ambiguous?
Theorem (Weber, Seidl 1991)
(1) A is not finitely ambiguous if and only if

(2) there are two states p # g € Q and a word w s.t.
w w w
p—p p—qgandg—q

e We're looking for this pattern pd pd
w
@ &
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Finitely ambiguous class

How to check if A is finitely ambiguous?

Theorem (Weber, Seidl 1991)
(1) A is not finitely ambiguous if and only if
(2) there are two states p # g € Q and a word w s.t.
p=pp—gandqg—gq

e We're looking for this pattern pd pd
w
@ &

Proof. (2) — (1)

Thereisae/ and v, s.t. a—> pand be F and v, s.t. qib
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Finitely ambiguous class

How to check if A is finitely ambiguous?

Theorem (Weber, Seidl 1991)
(1) A is not finitely ambiguous if and only if
(2) there are two states p # g € Q and a word w s.t.
p=pp—gandqg—gq

e We're looking for this pattern pd pd
w
@ &

Proof. (2) — (1)

Thereisae/ and v, s.t. a—> pand be F and v, s.t. qib

Then |Acc(vaw"vp)| = n— 1.
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Not finitely ambiguous — pattern (1)

e A strongly connected component is Q; © @ s.t. for all p, g € Q there are vy, v:

p->gandg->p
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Not finitely ambiguous — pattern (1)
e A strongly connected component is Q; © @ s.t. for all p, g € Q there are vy, v:
p->gandg->p

Lemma
QR=QuUQr...uUQnm, where Q; are strongly connected components. Moreover,

if pe @ and g € Q; and there is a word w s.t. p g then i <.
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Not finitely ambiguous — pattern (1)

e A strongly connected component is Q; © @ s.t. for all p, g € Q there are vy, v:

p->gandg->p

Lemma
QR=QuUQr...uUQnm, where Q; are strongly connected components. Moreover,

if pe @ and g € Q; and there is a word w s.t. p g then i <.

Proof.

We put two states p, g in the same Q, = Q iff there is p = g and g -> p.
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Not finitely ambiguous — pattern (1)

e A strongly connected component is Q; © @ s.t. for all p, g € Q there are vy, v:

p->gandg->p

Lemma

QR=QuUQr...uUQnm, where Q; are strongly connected components. Moreover,

if pe @ and g € Q; and there is a word w s.t. p g then i <.

Proof.
We put two states p, g in the same Q, < Q iff there is p SEN g and g 2, p.
Let @, for a € A be the set of subsets. Define graph G with edges Q, — @, if

there are pe Q, and g€ @y s.t. p > q.
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Not finitely ambiguous — pattern (1)

e A strongly connected component is Q; © @ s.t. for all p, g € Q there are vy, v:

p->gandg->p

Lemma

QR=QuUQr...uUQnm, where Q; are strongly connected components. Moreover,

if pe @ and g € Q; and there is a word w s.t. p g then i <.

Proof.
We put two states p, g in the same Q, < Q iff there is p SEN g and g 2, p.
Let @, for a € A be the set of subsets. Define graph G with edges Q, — @, if

there are pe Q, and g€ @y s.t. p > q.

G is closed under transitivity and antisymmetric
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Not finitely ambiguous — pattern (1)

e A strongly connected component is Q; © @ s.t. for all p, g € Q there are vy, v:

p->gandg->p

Lemma
QR=QuUQr...uUQnm, where Q; are strongly connected components. Moreover,

if pe @ and g € Q; and there is a word w s.t. p g then i <.

Proof.

We put two states p, g in the same Q, < Q iff there is p SEN g and g 2, p.
Let @, for a € A be the set of subsets. Define graph G with edges Q, — @, if
there are pe Q, and g€ @y s.t. p > q.

G is closed under transitivity and antisymmetric

So sets G is a DAG and @, can be topologically sorted
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Not finitely ambiguous — pattern (2)
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Not finitely ambiguous — pattern (2)

e Case one: there is a Q;, states p’,q' € Q; and a word v s.t.

there are two different runs p’ 4 q
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Not finitely ambiguous — pattern (2)

e Case one: there is a Q;, states p’,q' € Q; and a word v s.t.

there are two different runs p’ 4 q

Let v =vivo and p # g

o
AN
p q
NS
J
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Not finitely ambiguous — pattern (2)

e Case one: there is a Q;, states p’,q' € Q; and a word v s.t.

there are two different runs p’ 4 q

Let v =vivo and p # g

y
\

V3

\/

Filip Mazowiecki Automata and sequences 7/ 18



Not finitely ambiguous — pattern (2)

e Case one: there is a Q;, states p’,q' € Q; and a word v s.t.

there are two different runs p’ BN q
Let v =vivo and p # g

o Let w = vhinyy

w w w
pP—p PpP—4q qd—4q
V

V3

\/

Filip Mazowiecki Automata and sequences 7/ 18



Not finitely ambiguous — pattern (3)

Q:Qlu---UQm @
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Not finitely ambiguous — pattern (3)

Q:Qlu---UQm @

o Notice that every accepting run starts in some (; and ends in some Q;

through some other Q, ..., Q,
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Not finitely ambiguous — pattern (3)

Q:Qlu---UQm @

o Notice that every accepting run starts in some (; and ends in some Q;

through some other Q, ..., Q,

Example: From @ to Q4 through Qs
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Not finitely ambiguous — pattern (3)

Q:Qlu---UQm @

o Notice that every accepting run starts in some (; and ends in some Q;

through some other Q, ..., Q.
Example: From @ to Q4 through Qs

e We can decompose the sets of accepting runs into M < {1,... m}

where M = {i,... ,is} and i < i, < ... < is means that a run

starts in (J; goes through Q,,... Q;,_, to Q;
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Not finitely ambiguous — pattern (3)

Q:Qlu---UQm @

o Notice that every accepting run starts in some (; and ends in some Q;

through some other Q, ..., Q,
Example: From @ to Q4 through Qs

e We can decompose the sets of accepting runs into M < {1,... m}

where M = {i,... ,is} and i < i, < ... < is means that a run

starts in (J; goes through Q,,... Q;,_, to Q;

e Note: the number of such M is bounded by 2/¢/.
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Not finitely ambiguous — pattern (4)

Q=0Q1vQuU...u@n
When M = {i1, ..., ik} write Qq,... Qx instead of Q... Q;
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Not finitely ambiguous — pattern (4)

Q=0Q1vQuU...u@n
When M = {i1, ..., ik} write Qq,... Qx instead of Q... Q;

Definition
Let x = x1...xs € £*. The graph Gy (x) = (V, E) is defined as
V= (@) € (@ o0 Q) x (0,5} |
XX Xj41--Xs }

dgeln@Qi,gre FN Qx:q —> 9,9 —— gr
E={(p.j—1)—(q.)) | p—= q}
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Not finitely ambiguous — pattern (4)

Q=0Q1vQuU...u@n
When M = {i1, ..., ik} write Qq,... Qx instead of Q... Q;

Definition
Let x = x1...xs € £*. The graph Gy (x) = (V, E) is defined as
V={(g,j) e (Qru...u Q) x{0,... s}
X]...X Xj41--Xs

g€l nQigre FN Qc:q —> q,9 ——— qF}
E={(p.j—1)—(q.)) | p—= q}

o Case 2: for all i if p/, ¢’ € Q; then for every v at most one run p' = ¢’
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Not finitely ambiguous — pattern (4)

Q=0Q1vQuU...u@n
When M = {i1, ..., ik} write Qq,... Qx instead of Q... Q;

Definition
Let x = x1...xs € £*. The graph Gy (x) = (V, E) is defined as
V={(g,j) e (Qru...u Q) x{0,... s}
X]...X Xj41--Xs

g€l nQigre FN Qc:q —> q,9 ——— qF}
E={(p.j—1)—(q.)) | p—= q}

o Case 2: for all i if p/, ¢’ € Q; then for every v at most one run p' = ¢’

If A is not finitely ambiguous there is a word x3 ... x s.t. Acc(x) = N

For any N (in the end we choose N big enough)
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Not finitely ambiguous — pattern (4)

Q=0Q1vQuU...u@n
When M = {i1, ..., ik} write Qq,... Qx instead of Q... Q;

Definition
Let x = x1...xs € £*. The graph Gy (x) = (V, E) is defined as
V = {(q,j)e(Qlu...u Qk) X {0,...,5} ’
XX Xj41--Xs

g€l nQigre FN Qc:q —> q,9 ——— qF}
E={(p.j—1)—(q.)) | p—= q}

o Case 2: for all i if p/, ¢’ € Q; then for every v at most one run p' = ¢’

If A is not finitely ambiguous there is a word x3 ... x s.t. Acc(x) = N
For any N (in the end we choose N big enough)

Then there is an M s.t. the number of accepting runs by M is at least %
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Not finitely ambiguous — pattern (5)

M={i,...ik}, x=x1...x5, Acc(x) from Q; to Qy big

@@
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Not finitely ambiguous — pattern (5)

M={i,...ik}, x=x1...x5, Acc(x) from Q; to Qy big

@@

o forall =1,... . k—1let D)(x) € E s.t.
(p,j—1) = (q,j) € Di(x) if pe Q and q € Q11
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Not finitely ambiguous — pattern (5)

M={i,...ik}, x=x1...x, Acc(x)from Q; to Q big

o forall =1,... . k—1let D)(x) € E s.t.
(p,j—1) = (q,j) € Di(x) if pe Q and q € Q11

e Number of accepting runs on x is bounded by

|Q1| - [D1| - |Dao| - ... - | Di—1] - | Qi
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Not finitely ambiguous — pattern (5)

M={i,...ik}, x=x1...x, Acc(x)from Q; to Q big

o forall =1,... . k—1let D)(x) € E s.t.
(p,j—1) = (q,j) € Di(x) if pe Q and q € Q11

e Number of accepting runs on x is bounded by

|Q1| - [D1| - |Dao| - ... - | Di—1] - | Qi

e So there is | s.t. |D/| big
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Not finitely ambiguous — pattern (5)

M={i,...ik}, x=x1...x, Acc(x)from Q; to Q big

o forall =1,... . k—1let D)(x) € E s.t.
(p,j—1) = (q,j) € Di(x) if pe Q and q € Q11

e Number of accepting runs on x is bounded by

|Q1| - [D1| - |Dao| - ... - | Di—1] - | Qi

e So there is | s.t. |D/| big

e We choose N s.t. |D)| > 21Q|
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Not finitely ambiguous — pattern (6)

(pj—1) = (q,) e Dix)if pe Qand g€ Q1,, |D)|>219, x=x1...x
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Not finitely ambiguous — pattern (6)

(pj—1) = (q,) e Dix)if pe Qand g€ Q1,, |D)|>219, x=x1...x

o let JS{1,...,s}so Dy(x)={(p,j—1) —(q,j) |je J}
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Not finitely ambiguous — pattern (6)

(pj—1) = (q,) e Dix)if pe Qand g€ Q1,, |D)|>219, x=x1...x

o let JS{1,...,s}so Dy(x)={(p,j—1) —(q,j) |je J}

o Forevery je Jlet Aj = {r| (r,j) e V}

Filip Mazowiecki Automata and sequences 11 / 18



Not finitely ambiguous — pattern (6)

(pj—1) = (q,) e Dix)if pe Qand g€ Q1,, |D)|>219, x=x1...x

e Let J= {1,...,5} 50 Difx) = {(p.j— 1) — (q,]) | j € J}
o Forevery je Jlet Aj = {r| (r,j) e V}

o Since |Dj| > 2/% there exist j; < jp s.t. A, = A,

Wewrite A=A, =A;,, y1=Xj4+1...X,-1, a1 =X, andy = y1a
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Not finitely ambiguous — pattern (6)

(pj—1) = (q,) e Dix)if pe Qand g€ Q1,, |D)|>219, x=x1...x

e Let J= {1,...,5} 50 Difx) = {(p.j— 1) — (q,]) | j € J}
o Forevery je Jlet Aj = {r| (r,j) e V}

o Since |Dj| > 2/% there exist j; < jp s.t. A, = A,

We write A= A;; = A, ¥1 = Xj+1.--X,-1, a1 = Xj, and y = y1a1

e Thereare: g € Q), piy1 € Qir1, s.t. q 1, pi+1 and re Ast. r A, q
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Not finitely ambiguous — pattern (6)

(pj—1) = (q,) e Dix)if pe Qand g€ Q1,, |D)|>219, x=x1...x

e Let J= {1,...,5} 50 Difx) = {(p.j— 1) — (q,]) | j € J}
o Forevery je Jlet Aj = {r| (r,j) e V}

o Since |Dj| > 2/% there exist j; < jp s.t. A, = A,

We write A= A;; = A, ¥1 = Xj+1.--X,-1, a1 = Xj, and y = y1a1
e Thereare: g € Q), piy1 € Qir1, s.t. q 1, pi+1 and re Ast. r A, q

AndVscAdre A rS s andVrcAdscA rLs
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Not finitely ambiguous — pattern (6)

(pj—1) = (q,) e Dix)if pe Qand g€ Q1,, |D)|>219, x=x1...x

e Let J= {1,...,5} 50 Difx) = {(p.j— 1) — (q,]) | j € J}
o Forevery je Jlet Aj = {r| (r,j) e V}

o Since |Dj| > 2/% there exist j; < jp s.t. A, = A,

We write A= A;; = A, ¥1 = Xj+1.--X,-1, a1 = Xj, and y = y1a1
e Thereare: g € Q), piy1 € Qir1, s.t. q 1, pi+1 and re Ast. r A, q
AndVse Adre A r5s andVreAdseA rbs
e There is a sequence rj s.t. n EAR q; and r; Lor g

For some i1, i we get ry = Fy+ip, = P
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Not finitely ambiguous — pattern (6)

(pj—1) = (q,) e Dix)if pe Qand g€ Q1,, |D)|>219, x=x1...x

e let S {L,....s} 50 Di(x) = {(prj— 1) — (.]) | j € J
o Forevery je Jlet Aj = {r| (r,j) e V}

o Since |Dj| > 2/% there exist j; < jp s.t. A, = A,

We write A= A;; = A, ¥1 = Xj+1.--X,-1, a1 = Xj, and y = y1a1
e Thereare: g € Q), piy1 € Qir1, s.t. q 1, pi+1 and re Ast. r A, q

AndVscAdre A rS s andVrcAdscA rLs

: % y
e Thereis a sequence ris.t. n = qgand r;, = r;_1
For some iy, io we get rj, = ri4i, = p
.o y
e Similarly a sequence s;; s = pj41 and si_1 = 'S;, SO S, = S+, = q
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Not finitely ambiguous — pattern (7)

Y = a1 y’2 yi4
-1 i
A W T q

\_/ NG

% Y11y a y3 y'4
*p—p, P——q, qQ—PpP+1, Pr1—¢ g—(q
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Not finitely ambiguous — pattern (7)

Y = a1 y’2 yi4
-1 i
A W T q

\_/ NG

% Y11y a y3 y'4
*p—p, P——q, qQ—PpP+1, Pr1—¢ g—(q

e Given i1, i we can choose i3 and iz s.t. i1+ i3 =0 mod ih - 1z

let js.t. i1 + i3 :_j(ig . i4)
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Not finitely ambiguous — pattern (7)

Yy = a1 y,-2

-1 i3
> Y n/;\ al /;) y

\_/ \_/
% Y11y a y3 y'4

*p—p, Pp—4q, q — P+, P+v1—4 g—(q

e Given i1, i we can choose i3 and iz s.t. i1+ i3 =0 mod ih - 1z

let js.t. i1 + i3 :_j(ig . i4)

e p#q, letw=y/n

pP—>pp—>4g qg—q
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Polynomially ambiguous

How to check if A is polynomially ambiguous?
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How to check if A is polynomially ambiguous?

Theorem (Weber, Seidl 1991)
(1) A is not polynomially ambiguous if and only if

(2) there is a state p € Q and a word w s.t. there are two runs p — p
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Polynomially ambiguous

How to check if A is polynomially ambiguous?

Theorem (Weber, Seidl 1991)
(1) A is not polynomially ambiguous if and only if

(2) there is a state p € Q and a word w s.t. there are two runs p — p

e We're looking for this pattern

Proof. (2) = (1)

w

Thereisae/ and v; s.t. a—> pand be F and v, s.t. pib
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Polynomially ambiguous
How to check if A is polynomially ambiguous?
Theorem (Weber, Seidl 1991)

(1) A is not polynomially ambiguous if and only if

(2) there is a state p € Q and a word w s.t. there are two runs p — p

e We're looking for this pattern

Proof. (2) = (1)

w
Thereisae/ and v; s.t. a—> pand be F and v, s.t. pib

Then |Acc(vaw"vy)| = 2",
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No pattern — polynomially ambiguous

For every state p € Q and a word w there is at most one run p — p
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No pattern — polynomially ambiguous

For every state p € Q and a word w there is at most one run p — p

e Then in every strongly connected component there is at most one p — g

(this was “Case 2" in the previous proof)
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No pattern — polynomially ambiguous

For every state p € Q and a word w there is at most one run p — p

e Then in every strongly connected component there is at most one p — g

(this was “Case 2" in the previous proof)
e For every x = xi...xs the number of runs was bounded by

2090 |Qu| - |Dy| - |Ds| - ... - | D1l - | Qi
(see slide 10)
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No pattern — polynomially ambiguous

For every state p € Q and a word w there is at most one run p — p

e Then in every strongly connected component there is at most one p — g

(this was “Case 2" in the previous proof)
e For every x = xi...xs the number of runs was bounded by
2190 Q[ - [Du] - [Dsf - ...+ [ Dea] - | Qi

(see slide 10)

e It remains to observe that |D;| < |Q]*- s
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No pattern — polynomially ambiguous

For every state p € Q and a word w there is at most one run p — p

Then in every strongly connected component there is at most one p — g

(this was “Case 2" in the previous proof)

For every x = xy ... xs the number of runs was bounded by
219 1Qu| - D1l - [Daf -+ [Diea] - | Q]

(see slide 10)

It remains to observe that |D;| < |Q*- s

Then the number of runs is bounded by a polynomial of degree kK — 1

Filip Mazowiecki Automata and sequences

14 / 18



Finitely ambiguous class more details

Lemma (tutorials)

If A is finitely ambiguous then it is k-ambiguous for some k bounded exponen-

tially in | Q.
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Finitely ambiguous class more details

Lemma (tutorials)

If A is finitely ambiguous then it is k-ambiguous for some k bounded exponen-

tially in | Q.

Theorem (Weber 1994)

It A is finitely ambiguous then it is equivalent to a finite union of unambiguous

()=
O

automata

@3@ @3@
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Construction of the union of unambiguous automata

Proof (sketch).

An active run is a run that not necessarily ends in an accepting state
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Proof (sketch).

An active run is a run that not necessarily ends in an accepting state

e By the previous Lemma there is a bound on active runs for every word

kn: where k is the bound on the ambiguity and |Q| = n.
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Construction of the union of unambiguous automata

Proof (sketch).

An active run is a run that not necessarily ends in an accepting state

e By the previous Lemma there is a bound on active runs for every word

kn: where k is the bound on the ambiguity and |Q| = n.

e Assume that @ = {1,2,...,n} (we will use the order)

e Consider the deterministic automaton B

with states that are the set of all partial functions:

f:{1,2,...,kn} - Q

Filip Mazowiecki Automata and sequences 16 / 18



Construction of the union of unambiguous automata

Proof (sketch).

An active run is a run that not necessarily ends in an accepting state

By the previous Lemma there is a bound on active runs for every word

kn: where k is the bound on the ambiguity and |Q| = n.

Assume that Q@ = {1,2,...,n} (we will use the order)

Consider the deterministic automaton 55

with states that are the set of all partial functions:

f:{1,2,...,kn} - Q
B keeps track of all active runs in A

Filip Mazowiecki Automata and sequences
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Construction of the union of unambiguous automata (2)

e [3 states are partial functions f : {1,2,... kn} — @Q

The size of the domain is always the number of runs
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e [3 states are partial functions f : {1,2,... kn} — @Q

The size of the domain is always the number of runs

e Initially the domain is {1,...,|/|} and the images are | < Q

We use the order on @ for BB to be deterministic
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Construction of the union of unambiguous automata (2)

e [3 states are partial functions f : {1,2,... kn} — @Q

The size of the domain is always the number of runs

e Initially the domain is {1,...,|/|} and the images are | < Q

We use the order on @ for BB to be deterministic
e Then for every transition in A we update the states in B

Given a partial function : {1,2 ... kn} —> Q
we get g {1,2,... kn} —> Q
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Construction of the union of unambiguous automata (2)
e [3 states are partial functions f : {1,2,... kn} — @Q

The size of the domain is always the number of runs

e Initially the domain is {1,...,|/|} and the images are | < Q

We use the order on @ for BB to be deterministic
e Then for every transition in A we update the states in B
Given a partial function : {1,2 ... kn} —> Q

we get g {1,2,... kn} —> Q

e Then A x B has the same accepting runs as A but with extra information

Accepting states etc are when they are accepting in the A component
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Construction of the union of unambiguous automata (3)

e A x B is equivalent to A but with more information
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e A x B is equivalent to A but with more information

e In a similar way we add another component of states

Partial functions f : @ — {1,..., kn}

Filip Mazowiecki Automata and sequences 18 / 18



Construction of the union of unambiguous automata (3)

e A x B is equivalent to A but with more information

e In a similar way we add another component of states

Partial functions f : @ — {1,..., kn}

e This adds the information, which {1, ..., kn} has the current run in A

It can be extracted when updating B
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Construction of the union of unambiguous automata (3)

e A x B is equivalent to A but with more information

e In a similar way we add another component of states

Partial functions f : @ — {1,..., kn}

e This adds the information, which {1, ..., kn} has the current run in A

It can be extracted when updating B

e The final automata are divided into kn unambiguous automata
Restricting the accepting states to accepting in A

and i € {1,..., kn} in the final component

Filip Mazowiecki Automata and sequences 18 / 18



