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Ambiguity of automata
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Number of accepting runs

A an automaton (finite or weighted)

Important: Q states, I , F Ď Q initial and final states

(for weighted initial, final are tq | I pqq ‰ 0u, tq | F pqq ‰ 0u)

How many accepting runs are there for each word?

‚ Maximum of number of a’s and number of b’s
p q

a 1, b 0 a 0, b 1

2 runs

‚ Longest block of b’s
p q r

a 0, b 0

b 1

b 1

a 0

a 0, b 0

Op|w |q runs
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Ambiguity subclasses

For an automaton A and a word w

we write Accpwq for the set of accepting runs of A on w

An automaton is:

‚ Finitely ambiguous if there is a k such that |Accpwq| ď k for all w

We say it is k-ambiguous

For k “ 1 we say it is unambiguous

Maximum of number of a’s and number of b’s: 2-ambiguous

‚ Polynomially ambiguous if there is a polynomial p s.t.

|Accpwq| ď pp|w |q for all w

We say it is linearly ambiguous if the degree of p is 1, etc. . .

Longest block of b’s: linearly ambiguous
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‚ We will focus mostly on two classes

Hierarchy of classes for weighted automata

Weighted automata (WA)

Polynomially ambiguous WA

Finitely ambiguous WA

Unambiguous WA

Deterministic WA

Ď
Ď

Ď
Ď

‚ Are the inclusions strict?

Depends on the semiring

‚ For the Boolean semiring

It’s all equivalent

‚ Next week we will focus on

pQ,`, ¨, 0, 1q

pN`8,min,`,8, 0q

pN´8,max,`,´8, 0q
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Trimmed automata

Definition

An automaton A is trimmed if for every q P Q there is an initial state p P I

and a final state r P F s.t. there is a run from p to q and a run from q to r .

Remark

By removing states an automaton can be trimmed to an equivalent automaton.

Proof.

Every run that goes through one of the removed states has value 0.

‚ We will always implicitly assume that automata are trimmed.

We write p
w
ÝÑ q if there is a run from p to q on word w .

Filip Mazowiecki Automata and sequences 4 / 18



Trimmed automata

Definition

An automaton A is trimmed if for every q P Q there is an initial state p P I

and a final state r P F s.t. there is a run from p to q and a run from q to r .

Remark

By removing states an automaton can be trimmed to an equivalent automaton.

Proof.

Every run that goes through one of the removed states has value 0.

‚ We will always implicitly assume that automata are trimmed.

We write p
w
ÝÑ q if there is a run from p to q on word w .

Filip Mazowiecki Automata and sequences 4 / 18



Trimmed automata

Definition

An automaton A is trimmed if for every q P Q there is an initial state p P I

and a final state r P F s.t. there is a run from p to q and a run from q to r .

Remark

By removing states an automaton can be trimmed to an equivalent automaton.

Proof.

Every run that goes through one of the removed states has value 0.

‚ We will always implicitly assume that automata are trimmed.

We write p
w
ÝÑ q if there is a run from p to q on word w .

Filip Mazowiecki Automata and sequences 4 / 18



Trimmed automata

Definition

An automaton A is trimmed if for every q P Q there is an initial state p P I

and a final state r P F s.t. there is a run from p to q and a run from q to r .

Remark

By removing states an automaton can be trimmed to an equivalent automaton.

Proof.

Every run that goes through one of the removed states has value 0.

‚ We will always implicitly assume that automata are trimmed.

We write p
w
ÝÑ q if there is a run from p to q on word w .

Filip Mazowiecki Automata and sequences 4 / 18



Trimmed automata

Definition

An automaton A is trimmed if for every q P Q there is an initial state p P I

and a final state r P F s.t. there is a run from p to q and a run from q to r .

Remark

By removing states an automaton can be trimmed to an equivalent automaton.

Proof.

Every run that goes through one of the removed states has value 0.

‚ We will always implicitly assume that automata are trimmed.

We write p
w
ÝÑ q if there is a run from p to q on word w .

Filip Mazowiecki Automata and sequences 4 / 18



Finitely ambiguous class

How to check if A is finitely ambiguous?

Theorem (Weber, Seidl 1991)

(1) A is not finitely ambiguous if and only if

(2) there are two states p ‰ q P Q and a word w s.t.

p
w
ÝÑ p, p

w
ÝÑ q and q

w
ÝÑ q

‚ We’re looking for this pattern

p q

w

w

w

Proof. (2) ùñ (1)

There is a P I and va s.t. a
va
ÝÑ p and b P F and vb s.t. q

vb
ÝÑ b

Then |Accpvaw
nvbq| ě n ´ 1.
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Not finitely ambiguous ùñ pattern (1)

‚ A strongly connected component is Qi Ď Q s.t. for all p, q P Q there are v1, v2:

p
v1
ÝÑ q and q

v2
ÝÑ p

Lemma

Q “ Q1YQ2 . . .YQm, where Qi are strongly connected components. Moreover,

if p P Qi and q P Qj and there is a word w s.t. p
w
ÝÑ q then i ď j .

Proof.

We put two states p, q in the same Qa Ď Q iff there is p
v1
ÝÑ q and q

v2
ÝÑ p.

Let Qa for a P A be the set of subsets. Define graph G with edges Qa Ñ Qb if

there are p P Qa and q P Qb s.t. p
v
ÝÑ q.

G is closed under transitivity and antisymmetric

So sets G is a DAG and Qa can be topologically sorted

�
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Not finitely ambiguous ùñ pattern (2)

‚ Case one: there is a Qi , states p1, q1 P Qi and a word v s.t.

there are two different runs p1
v
ÝÑ q1

Let v “ v1v2 and p ‰ q

p1

p q

q1

v 1

v
1

v
2 v 2

v3

‚ Let w “ v2v3v1

p
w
ÝÑ p, p

w
ÝÑ q, q

w
ÝÑ q
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Not finitely ambiguous ùñ pattern (3)

Q “ Q1 Y . . .Y Qm
Q1

Q2

Q3 Q4

‚ Notice that every accepting run starts in some Qi and ends in some Qj

through some other Ql1, . . . ,Qls

Example: From Q1 to Q4 through Q3

‚ We can decompose the sets of accepting runs into M Ď t1, . . . ,mu

where M “ ti1, . . . , isu and i1 ă i2 ă . . . ă is means that a run

starts in Qi1 goes through Qi2, . . .Qis´1 to Qis

‚ Note: the number of such M is bounded by 2|Q|.
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where M “ ti1, . . . , isu and i1 ă i2 ă . . . ă is means that a run

starts in Qi1 goes through Qi2, . . .Qis´1 to Qis

‚ Note: the number of such M is bounded by 2|Q|.
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Not finitely ambiguous ùñ pattern (4)

Q “ Q1 Y Q2 Y . . .Y Qm

When M “ ti1, . . . , iku write Q1, . . .Qk instead of Qi1, . . .Qik

Definition

Let x “ x1 . . . xs P Σ˚. The graph GMpxq “ pV ,E q is defined as

V “ tpq, jq P pQ1 Y . . .Y Qkq ˆ t0, . . . , su |

DqI P I X Q1, qF P F X Qk : qI
x1...xj
ÝÝÝÑ q, q

xj`1...xs
ÝÝÝÝÑ qFu

E “ tpp, j ´ 1q Ñ pq, jq | p
xj
ÝÑ qu

‚ Case 2: for all i if p1, q1 P Qi then for every v at most one run p1
v
ÝÑ q1

If A is not finitely ambiguous there is a word x1 . . . xs s.t. Accpxq ě N

For any N (in the end we choose N big enough)

Then there is an M s.t. the number of accepting runs by M is at least N
2|Q|
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Not finitely ambiguous ùñ pattern (5)

M “ ti1, . . . iku, x “ x1 . . . xs , Accpxq from Q1 to Qk big

Q1 Q2
. . . Qk

‚ for all l “ 1, . . . , k ´ 1 let Dlpxq Ď E s.t.

pp, j ´ 1q Ñ pq, jq P Dlpxq if p P Ql and q P Ql`1

‚ Number of accepting runs on x is bounded by

|Q1| ¨ |D1| ¨ |D2| ¨ . . . ¨ |Dk´1| ¨ |Qk |

‚ So there is l s.t. |Dl | big

‚ We choose N s.t. |Dl | ą 2|Q|
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Not finitely ambiguous ùñ pattern (6)

pp, j ´ 1q Ñ pq, jq P Dlpxq if p P Ql and q P Ql`1,, |Dl | ą 2|Q|, x “ x1 . . . xs

‚ Let J Ď t1, . . . , su so Dlpxq “ tpp, j ´ 1q Ñ pq, jq | j P Ju

‚ For every j P J let Aj “ tr | pr , jq P V u

‚ Since |Dl | ą 2|Q| there exist j1 ă j2 s.t. Aj1 “ Aj2.

We write A “ Aj1 “ Aj2, y1 “ xj1`1 . . . xj2´1, a1 “ xj2 and y “ y1a1

‚ There are: ql P Ql , pl`1 P Ql`1, s.t. ql
a1
ÝÑ pl`1 and r P A s.t. r

y1
ÝÑ ql

And @s P A Dr P A: r
y
ÝÑ s and @r P A Ds P A: r

y
ÝÑ s

‚ There is a sequence ri s.t. r1
y1
ÝÑ ql and ri

y
ÝÑ ri´1

For some i1, i2 we get ri1 “ ri1`i2 “ p

‚ Similarly a sequence si : s0 “ pl`1 and si´1
y
ÝÑ si , so si3 “ si3`i4 “ q

Filip Mazowiecki Automata and sequences 11 / 18



Not finitely ambiguous ùñ pattern (6)

pp, j ´ 1q Ñ pq, jq P Dlpxq if p P Ql and q P Ql`1,, |Dl | ą 2|Q|, x “ x1 . . . xs

‚ Let J Ď t1, . . . , su so Dlpxq “ tpp, j ´ 1q Ñ pq, jq | j P Ju

‚ For every j P J let Aj “ tr | pr , jq P V u

‚ Since |Dl | ą 2|Q| there exist j1 ă j2 s.t. Aj1 “ Aj2.

We write A “ Aj1 “ Aj2, y1 “ xj1`1 . . . xj2´1, a1 “ xj2 and y “ y1a1

‚ There are: ql P Ql , pl`1 P Ql`1, s.t. ql
a1
ÝÑ pl`1 and r P A s.t. r

y1
ÝÑ ql

And @s P A Dr P A: r
y
ÝÑ s and @r P A Ds P A: r

y
ÝÑ s

‚ There is a sequence ri s.t. r1
y1
ÝÑ ql and ri

y
ÝÑ ri´1

For some i1, i2 we get ri1 “ ri1`i2 “ p

‚ Similarly a sequence si : s0 “ pl`1 and si´1
y
ÝÑ si , so si3 “ si3`i4 “ q

Filip Mazowiecki Automata and sequences 11 / 18



Not finitely ambiguous ùñ pattern (6)

pp, j ´ 1q Ñ pq, jq P Dlpxq if p P Ql and q P Ql`1,, |Dl | ą 2|Q|, x “ x1 . . . xs

‚ Let J Ď t1, . . . , su so Dlpxq “ tpp, j ´ 1q Ñ pq, jq | j P Ju

‚ For every j P J let Aj “ tr | pr , jq P V u

‚ Since |Dl | ą 2|Q| there exist j1 ă j2 s.t. Aj1 “ Aj2.

We write A “ Aj1 “ Aj2, y1 “ xj1`1 . . . xj2´1, a1 “ xj2 and y “ y1a1

‚ There are: ql P Ql , pl`1 P Ql`1, s.t. ql
a1
ÝÑ pl`1 and r P A s.t. r

y1
ÝÑ ql

And @s P A Dr P A: r
y
ÝÑ s and @r P A Ds P A: r

y
ÝÑ s

‚ There is a sequence ri s.t. r1
y1
ÝÑ ql and ri

y
ÝÑ ri´1

For some i1, i2 we get ri1 “ ri1`i2 “ p

‚ Similarly a sequence si : s0 “ pl`1 and si´1
y
ÝÑ si , so si3 “ si3`i4 “ q

Filip Mazowiecki Automata and sequences 11 / 18



Not finitely ambiguous ùñ pattern (6)

pp, j ´ 1q Ñ pq, jq P Dlpxq if p P Ql and q P Ql`1,, |Dl | ą 2|Q|, x “ x1 . . . xs

‚ Let J Ď t1, . . . , su so Dlpxq “ tpp, j ´ 1q Ñ pq, jq | j P Ju

‚ For every j P J let Aj “ tr | pr , jq P V u

‚ Since |Dl | ą 2|Q| there exist j1 ă j2 s.t. Aj1 “ Aj2.

We write A “ Aj1 “ Aj2, y1 “ xj1`1 . . . xj2´1, a1 “ xj2 and y “ y1a1

‚ There are: ql P Ql , pl`1 P Ql`1, s.t. ql
a1
ÝÑ pl`1 and r P A s.t. r

y1
ÝÑ ql

And @s P A Dr P A: r
y
ÝÑ s and @r P A Ds P A: r

y
ÝÑ s

‚ There is a sequence ri s.t. r1
y1
ÝÑ ql and ri

y
ÝÑ ri´1

For some i1, i2 we get ri1 “ ri1`i2 “ p

‚ Similarly a sequence si : s0 “ pl`1 and si´1
y
ÝÑ si , so si3 “ si3`i4 “ q

Filip Mazowiecki Automata and sequences 11 / 18



Not finitely ambiguous ùñ pattern (6)

pp, j ´ 1q Ñ pq, jq P Dlpxq if p P Ql and q P Ql`1,, |Dl | ą 2|Q|, x “ x1 . . . xs

‚ Let J Ď t1, . . . , su so Dlpxq “ tpp, j ´ 1q Ñ pq, jq | j P Ju

‚ For every j P J let Aj “ tr | pr , jq P V u

‚ Since |Dl | ą 2|Q| there exist j1 ă j2 s.t. Aj1 “ Aj2.

We write A “ Aj1 “ Aj2, y1 “ xj1`1 . . . xj2´1, a1 “ xj2 and y “ y1a1

‚ There are: ql P Ql , pl`1 P Ql`1, s.t. ql
a1
ÝÑ pl`1 and r P A s.t. r

y1
ÝÑ ql

And @s P A Dr P A: r
y
ÝÑ s and @r P A Ds P A: r

y
ÝÑ s

‚ There is a sequence ri s.t. r1
y1
ÝÑ ql and ri

y
ÝÑ ri´1

For some i1, i2 we get ri1 “ ri1`i2 “ p

‚ Similarly a sequence si : s0 “ pl`1 and si´1
y
ÝÑ si , so si3 “ si3`i4 “ q

Filip Mazowiecki Automata and sequences 11 / 18



Not finitely ambiguous ùñ pattern (6)

pp, j ´ 1q Ñ pq, jq P Dlpxq if p P Ql and q P Ql`1,, |Dl | ą 2|Q|, x “ x1 . . . xs

‚ Let J Ď t1, . . . , su so Dlpxq “ tpp, j ´ 1q Ñ pq, jq | j P Ju

‚ For every j P J let Aj “ tr | pr , jq P V u

‚ Since |Dl | ą 2|Q| there exist j1 ă j2 s.t. Aj1 “ Aj2.

We write A “ Aj1 “ Aj2, y1 “ xj1`1 . . . xj2´1, a1 “ xj2 and y “ y1a1

‚ There are: ql P Ql , pl`1 P Ql`1, s.t. ql
a1
ÝÑ pl`1 and r P A s.t. r

y1
ÝÑ ql

And @s P A Dr P A: r
y
ÝÑ s and @r P A Ds P A: r

y
ÝÑ s

‚ There is a sequence ri s.t. r1
y1
ÝÑ ql and ri

y
ÝÑ ri´1

For some i1, i2 we get ri1 “ ri1`i2 “ p

‚ Similarly a sequence si : s0 “ pl`1 and si´1
y
ÝÑ si , so si3 “ si3`i4 “ q

Filip Mazowiecki Automata and sequences 11 / 18



Not finitely ambiguous ùñ pattern (6)

pp, j ´ 1q Ñ pq, jq P Dlpxq if p P Ql and q P Ql`1,, |Dl | ą 2|Q|, x “ x1 . . . xs

‚ Let J Ď t1, . . . , su so Dlpxq “ tpp, j ´ 1q Ñ pq, jq | j P Ju

‚ For every j P J let Aj “ tr | pr , jq P V u

‚ Since |Dl | ą 2|Q| there exist j1 ă j2 s.t. Aj1 “ Aj2.

We write A “ Aj1 “ Aj2, y1 “ xj1`1 . . . xj2´1, a1 “ xj2 and y “ y1a1

‚ There are: ql P Ql , pl`1 P Ql`1, s.t. ql
a1
ÝÑ pl`1 and r P A s.t. r

y1
ÝÑ ql

And @s P A Dr P A: r
y
ÝÑ s and @r P A Ds P A: r

y
ÝÑ s

‚ There is a sequence ri s.t. r1
y1
ÝÑ ql and ri

y
ÝÑ ri´1

For some i1, i2 we get ri1 “ ri1`i2 “ p

‚ Similarly a sequence si : s0 “ pl`1 and si´1
y
ÝÑ si , so si3 “ si3`i4 “ q

Filip Mazowiecki Automata and sequences 11 / 18



Not finitely ambiguous ùñ pattern (6)

pp, j ´ 1q Ñ pq, jq P Dlpxq if p P Ql and q P Ql`1,, |Dl | ą 2|Q|, x “ x1 . . . xs

‚ Let J Ď t1, . . . , su so Dlpxq “ tpp, j ´ 1q Ñ pq, jq | j P Ju

‚ For every j P J let Aj “ tr | pr , jq P V u

‚ Since |Dl | ą 2|Q| there exist j1 ă j2 s.t. Aj1 “ Aj2.

We write A “ Aj1 “ Aj2, y1 “ xj1`1 . . . xj2´1, a1 “ xj2 and y “ y1a1

‚ There are: ql P Ql , pl`1 P Ql`1, s.t. ql
a1
ÝÑ pl`1 and r P A s.t. r

y1
ÝÑ ql

And @s P A Dr P A: r
y
ÝÑ s and @r P A Ds P A: r

y
ÝÑ s

‚ There is a sequence ri s.t. r1
y1
ÝÑ ql and ri

y
ÝÑ ri´1

For some i1, i2 we get ri1 “ ri1`i2 “ p

‚ Similarly a sequence si : s0 “ pl`1 and si´1
y
ÝÑ si , so si3 “ si3`i4 “ q

Filip Mazowiecki Automata and sequences 11 / 18



Not finitely ambiguous ùñ pattern (7)

y “ y1a1

p ql pl`1 q
y i1´1y1 a1 y i3

y i2 y i4

‚ p
y i2
ÝÑ p, p

y i1´1y1
ÝÝÝÝÑ ql , ql

a1
ÝÑ pl`1, pl`1

y i3
ÝÑ q, q

y i4
ÝÑ q

‚ Given i1, i2 we can choose i3 and i4 s.t. i1 ` i3 ” 0 mod i2 ¨ i4

let j s.t. i1 ` i3 “ jpi2 ¨ i4q

‚ p ‰ q, let w “ y j ¨i2¨i4

p
w
ÝÑ p, p

w
ÝÑ q, q

w
ÝÑ q

�
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Polynomially ambiguous

How to check if A is polynomially ambiguous?

Theorem (Weber, Seidl 1991)

(1) A is not polynomially ambiguous if and only if

(2) there is a state p P Q and a word w s.t. there are two runs p
w
ÝÑ p

‚ We’re looking for this pattern
p

w

w
Proof. (2) ùñ (1)

There is a P I and v1 s.t. a
va
ÝÑ p and b P F and v2 s.t. p

vb
ÝÑ b

Then |Accpvaw
nvbq| ě 2n.
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No pattern ùñ polynomially ambiguous

For every state p P Q and a word w there is at most one run p
w
ÝÑ p

‚ Then in every strongly connected component there is at most one p
w
ÝÑ q

(this was “Case 2” in the previous proof)

‚ For every x “ x1 . . . xs the number of runs was bounded by

2|Q| ¨ |Q1| ¨ |D1| ¨ |D2| ¨ . . . ¨ |Dk´1| ¨ |Qk |

(see slide 10)

‚ It remains to observe that |Di | ď |Q|
2 ¨ s

‚ Then the number of runs is bounded by a polynomial of degree k ´ 1

�
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Finitely ambiguous class more details

Lemma (tutorials)

If A is finitely ambiguous then it is k-ambiguous for some k bounded exponen-

tially in |Q|.

Theorem (Weber 1994)

If A is finitely ambiguous then it is equivalent to a finite union of unambiguous

automata

p

q1

q2

a

a

b

b
 

p

p1

q1

q2

a

a

b

b
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Construction of the union of unambiguous automata

Proof (sketch).

An active run is a run that not necessarily ends in an accepting state

‚ By the previous Lemma there is a bound on active runs for every word

kn: where k is the bound on the ambiguity and |Q| “ n.

‚ Assume that Q “ t1, 2, . . . , nu (we will use the order)

‚ Consider the deterministic automaton B
with states that are the set of all partial functions:

f : t1, 2, . . . , knu Ñ Q

‚ B keeps track of all active runs in A
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Construction of the union of unambiguous automata (2)

‚ B states are partial functions f : t1, 2, . . . , knu Ñ Q

The size of the domain is always the number of runs

‚ Initially the domain is t1, . . . , |I |u and the images are I Ď Q

We use the order on Q for B to be deterministic

‚ Then for every transition in A we update the states in B
Given a partial function f : t1, 2, . . . , knu Ñ Q

we get g : t1, 2, . . . , knu Ñ Q

‚ Then Aˆ B has the same accepting runs as A but with extra information

Accepting states etc are when they are accepting in the A component
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Construction of the union of unambiguous automata (3)

‚ Aˆ B is equivalent to A but with more information

‚ In a similar way we add another component of states

Partial functions f : Q Ñ t1, . . . , knu

‚ This adds the information, which t1, . . . , knu has the current run in A
It can be extracted when updating B

‚ The final automata are divided into kn unambiguous automata

Restricting the accepting states to accepting in A
and i P t1, . . . , knu in the final component
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