Lecture 4

Ambiguity for 1-letter alphabets

Powered by BeamerikZ


https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

Hierarchy of classes for weighted automata

e The inclusions are strict for (Q, +,-,0,1) Weighted automata (WA)

even over 1-letter alphabet
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Hierarchy of classes for weighted automata

The inclusions are strict for (Q, +,-,0,1) Weighted automata (WA)

even over 1-letter alphabet

Ul
Polynomially ambiguous WA

Recall that WA = linear recursive sequences Ul

over 1-letter alphabet

Each class corresponds to

some class of sequences

Most inclusions: tutorials

We focus on the most difficult one
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Polynomially ambiguous sequences over Q

Fix the semiring (Q, +,-,0,1)

Theorem (Barloy et. al 2019)
Polynomial ambiguous WA over 1-letter alphabet = linear recursive sequences

with eigenvalues that are roots of rational numbers.
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Fix the semiring (Q, +,-,0,1)

Theorem (Barloy et. al 2019)
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e Roots of rational numbers: e.g. 2,5 or v/2, —v/4 or even i, i + 1.
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with eigenvalues that are roots of rational numbers.

e Roots of rational numbers: e.g. 2,5 or v/2, —v/4 or even i, i + 1.
But not 1 + /2
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Polynomially ambiguous sequences over Q

Fix the semiring (Q, +,-,0,1)

Theorem (Barloy et. al 2019)

Polynomial ambiguous WA over 1-letter alphabet = linear recursive sequences

with eigenvalues that are roots of rational numbers.

e Roots of rational numbers: e.g. 2,5 or v/2, —v/4 or even i, i + 1.
But not 1 + /2

e Eigenvalues of linear recursive sequences come from the recurrence.

For example Fy0 = Fpi1 + F, ~ x> —x—1=0.

Corollary

Fibonacci sequence is not definable by polynomially ambiguous WA.
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Formal power series

For example u, =1
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Formal power series

For example u, =1

e For Fibonacci we know

F(x) = x + xF(x) + x*F(x) ~ F(x) =
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Formal power series

For example u, =1

e For Fibonacci we know

X
F(x) = F °F F(x) =
(x) = x + xF(x) + x°F(x) ~ F(x) e
e In general if up = alpi_1+ ak_1Upik—1+ ...a1U,
o0 00) o0
U(x) = Z upx" = P(x) + Z Upikx™F = P(x) 4+ x Z Up kX"
n=0 n=0 n=0

where P(x) of degree at most k
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Formal power series

For example u, =1

e For Fibonacci we know

X
F(x) = x + xF(x) + x*F(x) ~ F(x) = >
l—x—x
e In general if up = alpi_1+ ak_1Upik—1+ ...a1U,
oo o0 oo
U(x) = Z upx" = P(x) + Z Upikx™F = P(x) 4+ x Z Up kX"
n=0 n=0 n=0
where P(x) of degree at most k
00] o0
n n
Z UprkX = Z(akun+k—1 + ak—1Uptk—1 + ... a1Up)X
n=0 n=0
Filip Mazowiecki Automata and sequences
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Formal power series (2)

0
U(X) = P(X) + xk Z(akun+k_1 + ak—1Upyk—1 1+ - .. alu,,)x”
n=0
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Formal power series (2)

0
U(X) = P(X) + xk Z(akun+k_1 + ak—1Upyk—1 1+ - .. alu,,)x”
n=0
0

o0
xX Z ailip, i 1x" = a1 Z Upy i X" = a;xk_i+1(U(x) + Pi(x))
n=0 n=0

where a;x*~"*1P;(x) of degree at most k
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Formal power series (2)

n
akun+k 1+ ak—1Upsk—1 + . a1un)

<
x

||

o
3
MS

n=0

XkZaiUn+/—1X" = ax” I+1Z“n+/— T = aiXk_iH(U(X) + Pi(x))

n=0

where a;x*~"*1P;(x) of degree at most k

Ulx) = P'(x) + axU(x) + ... + aix*U(x)
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Formal power series (2)

n
akun+k 1+ ak—1Upsk—1 + . alun)

<
x

||
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3
MS

n=0

XkZaiUn+/—1X" = ax” I+1Z“n+/— T = aiXk_iH(U(X) + Pi(x))

n=0

where a;x*~"*1P;(x) of degree at most k

Ulx) = P'(x) + axU(x) + ... + aix*U(x)

where @ is the reciprocal polynomial of the characteristic polynomial
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Formal power series (2)

n
akun+k 1+ ak—1Upsk—1 + . alun)

<
x

||

o
3
MS

n=0

XkZaiUn+/—1X" = ax” I+1Z“n+/— T = aiXk_iH(U(X) + Pi(x))

n=0

where a;x*~"*1P;(x) of degree at most k

Ulx) = P'(x) + axU(x) + ... + aix*U(x)

P’ (x
Ux) = ()

Q(x)
where @ is the reciprocal polynomial of the characteristic polynomial
xK—axkt—  —a and 1 —ax — ... — ayx”
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Formal power series (2)

n
akun+k 1+ ak—1Upsk—1 + . alun)

<
x

||

o
3
MS

n=0

XkZaiUn+/—1X" = ax” I+1Z“n+/— T = aiXk_iH(U(X) + Pi(x))

n=0

where a;x*~"*1P;(x) of degree at most k

Ulx) = P'(x) + axU(x) + ... + aix*U(x)

P’ (x
Ux) = ()

Q(x)
where @ is the reciprocal polynomial of the characteristic polynomial
xK—axkt—  —a and 1 —ax — ... — ayx”

p*(x) = x*p(%), so A root of p(x) iff } root of p*(x)
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Polynomially ambiguous — eigenvalues are roots of rationals (1)

e Fix A polynomially ambiguous (trimmed) ¥ = {a}

How do strongly connected components look like?
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Polynomially ambiguous — eigenvalues are roots of rationals (1)

e Fix A polynomially ambiguous (trimmed) ¥ = {a}

How do strongly connected components look like?

e Chained loops
gi loops in connected components A
B 2/ i

Initial state g;, final state g3

Filip Mazowiecki Automata and sequences 5/ 17



Polynomially ambiguous — eigenvalues are roots of rationals (1)

e Fix A polynomially ambiguous (trimmed) ¥ = {a}

How do strongly connected components look like?

e Chained loops
gi loops in connected components A
B 2/ i

Initial state g;, final state g3

e By previous lecture A is equivalent to a union of chained loops
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Polynomially ambiguous — eigenvalues are roots of rationals (2)

Lemma

The formal series induced by a chained loop with 1 strongly connected compo-

«
1—x/

number of states.

nent is where « is the initial weight, A is the product of weights and /
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Polynomially ambiguous — eigenvalues are roots of rationals (2)

Lemma

The formal series induced by a chained loop with 1 strongly connected compo-

@]

nentis —— where a is the initial weight, A is the product of weights and /

number of states.

Proof.

1—)\x Zoz)\x o

Filip Mazowiecki Automata and sequences 6/ 17



Polynomially ambiguous — eigenvalues are roots of rationals (2)

Lemma

The formal series induced by a chained loop with 1 strongly connected compo-

@]

nentis —— where a is the initial weight, A is the product of weights and /

number of states.

Proof.

1—)\x Zoz)\x o

Definition
A1 and A, chained loops. Their concatenation A = A;.A, is the union of
states, where: the initial state is from Aj; the final state is from A, and merg-
ing the output of A; and input of A, into a transition
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Polynomially ambiguous — eigenvalues are roots of rationals (3)

Ay 2 A, 5
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Polynomially ambiguous — eigenvalues are roots of rationals (3)

5
3 1 3
A 2 A, 5 AiA, 2 —

Lemma

O

Let A; and A5 chained loops and let S; and S, be their formal power series.

The formal power series of A A is x515,.
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Polynomially ambiguous — eigenvalues are roots of rationals (3)

5
3 1 3
A 2 A, 5 AiA, 2 —

Lemma

O

Let A; and A5 chained loops and let S; and S, be their formal power series.

The formal power series of A A is x515,.

Proof.

n—1

ArAx(n) = Y A(i = D) Ap(n—i) = Y Ai(i)Ap(n— i — 1)
i=0

I
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Polynomially ambiguous — eigenvalues are roots of rationals (3)

5
3 1 3
A 2 A, 5 AiA, 2 —

Lemma

O

Let A; and A5 chained loops and let S; and S, be their formal power series.

The formal power series of A A is x515,.

Proof.

n—1

Ar(i = D) Ax(n—i) = > Ai(i)Ao(n— i —1)
i=0

Q0 00] 00] n
n n - n
Z upx'" - Z Vp—1x" is equal to Z Z Uivoe_i—1 | x

>
>
=
I
I

n=0 n=0 n=0 \/=0
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Polynomially ambiguous — eigenvalues are roots of rationals (4)

e Let A; and A, chained loops and let S; and S, be their formal power series.

The formal power series of A; union A, is 51 + 5.

Filip Mazowiecki Automata and sequences 8/ 17



Polynomially ambiguous — eigenvalues are roots of rationals (4)

e Let A; and A, chained loops and let S; and S, be their formal power series.

The formal power series of A; union A, is 51 + 5.

e By all lemmas the power series of a polynomial ambiguous automaton is %

where Q(x) = H (1- )\,-x/") and \; € Q

i
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Polynomially ambiguous — eigenvalues are roots of rationals (4)

e Let A; and A, chained loops and let S; and S, be their formal power series.
The formal power series of A; union A, is 51 + 5.

e By all lemmas the power series of a polynomial ambiguous automaton is %

where Q(x) = l_[ (1- )\,-x/") and \; € Q

Notice that roots of @ are roots or \;

e If P and @ are coprime then @ is reciprocal of the characteristic polynomial

1

So roots of the characteristic polynomial are roots of +
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Eigenvalues are roots of rationals — polynomially ambiguous (1)

Consider a sequence with eigenvalues that are root of rationals
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Eigenvalues are roots of rationals — polynomially ambiguous (1)

Consider a sequence with eigenvalues that are root of rationals

e So formal power series ggi)) where Q(x) = H (1 —Ax")

i
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Eigenvalues are roots of rationals — polynomially ambiguous (1)

Consider a sequence with eigenvalues that are root of rationals

e So formal power series QEZ?) where Q(x) = H (1 _ )\I_X/i)

i

e Polynomials with rational coefficients Q[x] are Euclidean
— if P, Q € Q[x] don't share roots then there are Ry, R, € Q s.t.
RiP+ RQ=1
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Eigenvalues are roots of rationals — polynomially ambiguous (1)

Consider a sequence with eigenvalues that are root of rationals

e So formal power series QE);)) where Q(x) = H (1 _ )\I_X/i)

i

e Polynomials with rational coefficients Q[x] are Euclidean
— if P, Q € Q[x] don't share roots then there are Ry, R, € Q s.t.
RiP+ RQ=1

/ t/
e Let P=(1-2x)% @ = (1= Xx') for Az X
There are Ry, Ry s.t. RiIP + R,Q =1
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Eigenvalues are roots of rationals — polynomially ambiguous (1)

Consider a sequence with eigenvalues that are root of rationals

e So formal power series QE);)) where Q(x) = H (1 _ )\I_X/i)

i

e Polynomials with rational coefficients Q[x] are Euclidean
— if P, Q € Q[x] don't share roots then there are Ry, R, € Q s.t.
RiP+ RQ=1

/ t/
e Let P=(1-2x)% @ = (1= Xx') for Az X
There are Ry, Ry s.t. RiIP + R,Q =1

A _ ARPHRQ) AR2 ARy
e Then = PO = + 7
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Eigenvalues are roots of rationals — polynomially ambiguous (2)

By induction

P(X) o A,‘
Q(x) B Z (1-— )\,-x’i)t’

i
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Eigenvalues are roots of rationals — polynomially ambiguous (2)

P(X) _ Z A,‘

By induction
y | UcCtI Q(X) (1 . )\I'X/i)ti

i

e Polynomial ambiguous WA are closed under sum and shifts

: is polynomial ambiguous

(1—)\,-xl)

It remains to prove that
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Eigenvalues are roots of rationals — polynomially ambiguous (2)

P(X) _ Z A,‘

By induction
y | UcCtl Q(X) (1 . )\I’X/i)ti

i

e Polynomial ambiguous WA are closed under sum and shifts

: is polynomial ambiguous

(1—)\,-xl)

It remains to prove that

1 = /n+t—1
) (1—)\,'X/)t_2< t

) A" (tutorials)
n=0
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Eigenvalues are roots of rationals — polynomially ambiguous (2)

P(X) _ Z A,‘

By induction
y | UcCtl Q(X) (1 . )\I’X/i)ti

i

e Polynomial ambiguous WA are closed under sum and shifts
1

(1—)\,'Xl)t

It remains to prove that is polynomial ambiguous

o0

1 t—1
. = E et A" (tutorials)
(]. — )\,‘X/)t 0 t =

Remark

Here we rely on Q. For example Fibonacci over R is finitely ambiguous because

Fo= (522)" + (522)"

Filip Mazowiecki Automata and sequences 10 / 17



The (N, min, +,00,0) and (N_.,, max, +, —00,0) semirings

Can we proceed similarly over these semirings?
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The (N, min, +,00,0) and (N_.,, max, +, —00,0) semirings
Can we proceed similarly over these semirings?
Theorem (Gaubert 1994, Lombardy 2001)
Fix a 1-letter alphabet and (N, min, +,00,0) or (N_., max, +, —o0, 0)

semiring. Then Weighted automata are equivalent to unambiguous weighted

automata.
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The (N, min, +,00,0) and (N_.,, max, +, —00,0) semirings

Can we proceed similarly over these semirings?

Theorem (Gaubert 1994, Lombardy 2001)
Fix a 1-letter alphabet and (N, min, +,00,0) or (N_., max, +, —o0, 0)
semiring. Then Weighted automata are equivalent to unambiguous weighted

automata.

Proof.

Two steps:
1. From WA to finitely ambiguous WA
2. From finitely ambiguous WA to unambiguous WA
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The (N, min, +,00,0) and (N_.,, max, +, —00,0) semirings

Can we proceed similarly over these semirings?

Theorem (Gaubert 1994, Lombardy 2001)
Fix a 1-letter alphabet and (N, min, +,00,0) or (N_., max, +, —o0, 0)
semiring. Then Weighted automata are equivalent to unambiguous weighted

automata.

Proof.
Two steps:
1. From WA to finitely ambiguous WA
2. From finitely ambiguous WA to unambiguous WA

We do (1) now, (2) on tutorials
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From WA to finitely ambiguous WA (1)

Let A over with 1-letter alphabet over (N_,, max, +, —00,0) (trimmed)
and let |Q| = n
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From WA to finitely ambiguous WA (1)

Let A over with 1-letter alphabet over (N_,, max, +, —00,0) (trimmed)
and let |Q| = n

e A simple cycle is ¢ = (qo, - - ., gk) where g, pairwise different except gy = g
Since there is one letter this uniquely determines a run on a*

Let val(c) be the sum (semiring product) of all values
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From WA to finitely ambiguous WA (1)

Let A over with 1-letter alphabet over (N_,, max, +, —00,0) (trimmed)
and let |Q| = n

e A simple cycle is ¢ = (qo, - - ., gk) where g, pairwise different except gy = g
Since there is one letter this uniquely determines a run on a*

Let val(c) be the sum (semiring product) of all values

Definition
Let p = qo,-..,9m be arunand let P = {qo, ..., gm} (the set of states with-
out repetitions). A simple cycle decomposition of p is obtained as follows: (1)
mark one state from P in p (these cannot be removed); (2) from the beginning
if you see a simple cycle remove it modulo (1); (3) stop when nothing can be

removed.
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From WA to finitely ambiguous WA (2)
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From WA to finitely ambiguous WA (2)
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From WA to finitely ambiguous WA (2)
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From WA to finitely ambiguous WA (2)
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From WA to finitely ambiguous WA (2)

q P r P q

e In the end we get run of length at most n° and multiplicity of simple cycles

Here: (q,p, r, p,q) and 2 simple cycles of (p, p)
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From WA to finitely ambiguous WA (2)

q P r P q

e In the end we get run of length at most n° and multiplicity of simple cycles

Here: (q,p, r, p,q) and 2 simple cycles of (p, p)

e By putting back simple cycles (not necessarily in the same order)

we get a run of the same value

Filip Mazowiecki Automata and sequences 13 / 17



From WA to finitely ambiguous WA (2)

q P r P q

e In the end we get run of length at most n° and multiplicity of simple cycles

Here: (q,p, r, p,q) and 2 simple cycles of (p, p)

e By putting back simple cycles (not necessarily in the same order)

we get a run of the same value

e Initially we had (g, p, p, p, r, p, q) we can get (q,p, r,p,p,p,q)
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From WA to finitely ambiguous WA (2)

q P r P q

In the end we get run of length at most n?> and multiplicity of simple cycles

Here: (q,p, r, p,q) and 2 simple cycles of (p, p)

By putting back simple cycles (not necessarily in the same order)

we get a run of the same value

Initially we had (q, p, p, p, r, p, q) we can get (q,p,r,p, p, P, q)

A simple cycle decomposition is (p, f), where p is a run of size at most n?

and f : S — N, where S is the set of all simple cycles
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From WA to finitely ambiguous WA (2)

q P r P q
e In the end we get run of length at most n° and multiplicity of simple cycles

Here: (q,p, r, p,q) and 2 simple cycles of (p, p)

e By putting back simple cycles (not necessarily in the same order)

we get a run of the same value

e Initially we had (q, p, p, p, 1, p, q) we can get (q,p, r,p,p,p,q)

e A simple cycle decomposition is (p, f), where p is a run of size at most n?

and f : S — N, where S is the set of all simple cycles

e We denote val(p, f) the value of any run obtained from it
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From WA to finitely ambiguous WA (3)

Lemma
Fix a word a”. For every run p there is a simple cycle decomposition on

(0, ) such that: (1) at most one simple cycle occurs more than n times; (2)

val (6, f) = val(p)
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From WA to finitely ambiguous WA (3)

Lemma
Fix a word a”. For every run p there is a simple cycle decomposition on

(0, ) such that: (1) at most one simple cycle occurs more than n times; (2)

val (6, f) = val(p)

Proof.

Let (o', f') be a simple cycle decomposition obtained from p
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From WA to finitely ambiguous WA (3)

Lemma
Fix a word a”. For every run p there is a simple cycle decomposition on

(0, ) such that: (1) at most one simple cycle occurs more than n times; (2)

val (6, f) = val(p)

Proof.
Let (o', f') be a simple cycle decomposition obtained from p
o If (o, f') satisfies (1) then we are done
Otherwise let o and o’ be simple cycles that occur t, t' > n times.

Let k, k" < n be their lengths
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From WA to finitely ambiguous WA (3)

Lemma
Fix a word a”. For every run p there is a simple cycle decomposition on

(0, ) such that: (1) at most one simple cycle occurs more than n times; (2)

val (6, f) = val(p)

Proof.
Let (o', f') be a simple cycle decomposition obtained from p
o If (o, f') satisfies (1) then we are done
Otherwise let o and o’ be simple cycles that occur t, t' > n times.

Let k, k" < n be their lengths

e Notice that k copies of ¢’ and k' copies of o have the same length

(bounded by n?)
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From WA to finitely ambiguous WA (4)

e Without loss of generality assume that kval(c') = k'val (o)
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From WA to finitely ambiguous WA (4)

e Without loss of generality assume that kval(c') > k'val (o)

e Remove k' copies of o and add k copies of ¢’
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From WA to finitely ambiguous WA (4)

e Without loss of generality assume that kval(c') > k'val (o)

e Remove k' copies of o and add k copies of ¢’

e We get a simple cycle decomposition whose value is the same or bigger

(on the same word a™)
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From WA to finitely ambiguous WA (4)

e Without loss of generality assume that kval(c') > k'val (o)

e Remove k' copies of o and add k copies of ¢’

e We get a simple cycle decomposition whose value is the same or bigger

(on the same word a™)

e Proceed until o occurs at most n times

Proceed the same if there are two simple cycles that occur more than n times
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From WA to finitely ambiguous WA (4)

e Without loss of generality assume that kval(c') > k'val (o)

Remove k' copies of o and add k copies of ¢’

We get a simple cycle decomposition whose value is the same or bigger

(on the same word a™)

Proceed until o occurs at most n times

Proceed the same if there are two simple cycles that occur more than n times

So for every maximal run there is a simple cycle decomposition with

the same weight, where at most one cycle occurs many times
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From WA to finitely ambiguous WA (5)

e The number of all simple cycles is exponential in n, say s
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e For every run of length t < sn we construct:

OO OO

where x is the output for at
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From WA to finitely ambiguous WA (5)

e The number of all simple cycles is exponential in n, say s

The construction is a big union of deterministic automata

e For every run of length t < sn we construct:

OO OO

where x is the output for at

e For every P < @ and t < sn and simple cycle o

OO O C
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Final comments

e Changing the lemma to replace simple cycles with smaller ones

would prove this for (N, ., min, +, 00, 0) (slide 14)
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e Changing the lemma to replace simple cycles with smaller ones

would prove this for (N, ., min, +, 00, 0) (slide 14)

e To prove that the ambiguity hierarchy is strict

for (N4, min, +,00,0) and (N_.,, max, +, —00,0) we need at least 2 letters
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Final comments

e Changing the lemma to replace simple cycles with smaller ones

would prove this for (N, ., min, +, 00, 0) (slide 14)

e To prove that the ambiguity hierarchy is strict

for (N4, min, +,00,0) and (N_.,, max, +, —00,0) we need at least 2 letters

e On tutorials you've already seen examples

(maximal number of a's and b's)

e Next week more details
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