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‚ We focus on the most difficult one

Hierarchy of classes for weighted automata

Weighted automata (WA)

Polynomially ambiguous WA

Finitely ambiguous WA

Unambiguous WA

Deterministic WA

Ď
Ď

Ď
Ď

‚ The inclusions are strict for pQ,`, ¨, 0, 1q

even over 1-letter alphabet

‚ Recall that WA = linear recursive sequences

over 1-letter alphabet

‚ Each class corresponds to

some class of sequences

‚ Most inclusions: tutorials

Filip Mazowiecki Automata and sequences 1 / 17



‚ We focus on the most difficult one

Hierarchy of classes for weighted automata

Weighted automata (WA)

Polynomially ambiguous WA

Finitely ambiguous WA

Unambiguous WA

Deterministic WA

Ď
Ď

Ď
Ď

‚ The inclusions are strict for pQ,`, ¨, 0, 1q

even over 1-letter alphabet

‚ Recall that WA = linear recursive sequences

over 1-letter alphabet

‚ Each class corresponds to

some class of sequences

‚ Most inclusions: tutorials

Filip Mazowiecki Automata and sequences 1 / 17



‚ We focus on the most difficult one

Hierarchy of classes for weighted automata

Weighted automata (WA)

Polynomially ambiguous WA

Finitely ambiguous WA

Unambiguous WA

Deterministic WA

Ď
Ď

Ď
Ď

‚ The inclusions are strict for pQ,`, ¨, 0, 1q

even over 1-letter alphabet

‚ Recall that WA = linear recursive sequences

over 1-letter alphabet

‚ Each class corresponds to

some class of sequences

‚ Most inclusions: tutorials

Filip Mazowiecki Automata and sequences 1 / 17



‚ We focus on the most difficult one

Hierarchy of classes for weighted automata

Weighted automata (WA)

Polynomially ambiguous WA

Finitely ambiguous WA

Unambiguous WA

Deterministic WA

Ď
Ď

Ď
Ď

‚ The inclusions are strict for pQ,`, ¨, 0, 1q

even over 1-letter alphabet

‚ Recall that WA = linear recursive sequences

over 1-letter alphabet

‚ Each class corresponds to

some class of sequences

‚ Most inclusions: tutorials

Filip Mazowiecki Automata and sequences 1 / 17



‚ We focus on the most difficult one

Hierarchy of classes for weighted automata

Weighted automata (WA)

Polynomially ambiguous WA

Finitely ambiguous WA

Unambiguous WA

Deterministic WA

Ď
Ď

Ď
Ď

‚ The inclusions are strict for pQ,`, ¨, 0, 1q

even over 1-letter alphabet

‚ Recall that WA = linear recursive sequences

over 1-letter alphabet

‚ Each class corresponds to

some class of sequences

‚ Most inclusions: tutorials

Filip Mazowiecki Automata and sequences 1 / 17



Polynomially ambiguous sequences over Q

Fix the semiring pQ,`, ¨, 0, 1q

Theorem (Barloy et. al 2019)

Polynomial ambiguous WA over 1-letter alphabet = linear recursive sequences

with eigenvalues that are roots of rational numbers.

‚ Roots of rational numbers: e.g. 2, 5 or
?

2,´ 3
?

4 or even i , i ` 1.

But not 1`
?

2

‚ Eigenvalues of linear recursive sequences come from the recurrence.

For example Fn`2 “ Fn`1 ` Fn  x2 ´ x ´ 1 “ 0.

Corollary

Fibonacci sequence is not definable by polynomially ambiguous WA.
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Formal power series

For example un “ 1

Upxq “
8
ÿ

n“0

un ¨ x
n
“

8
ÿ

n“0

1 ¨ xn “
1

1´ x

‚ For Fibonacci we know

F pxq “ x ` xF pxq ` x2F pxq  F pxq “
x

1´ x ´ x2

‚ In general if un`k “ akun`k´1 ` ak´1un`k´1 ` . . . a1un

Upxq “
8
ÿ

n“0

unx
n
“ Ppxq `

8
ÿ

n“0

un`kx
n`k

“ Ppxq ` xk
8
ÿ

n“0

un`kx
n

where Ppxq of degree at most k

8
ÿ

n“0

un`kx
n
“

8
ÿ

n“0

pakun`k´1 ` ak´1un`k´1 ` . . . a1unqx
n
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Formal power series (2)

Upxq “ Ppxq ` xk
8
ÿ

n“0

pakun`k´1 ` ak´1un`k´1 ` . . . a1unqx
n

xk
8
ÿ

n“0

aiun`i´1x
n
“ aix

k´i`1
8
ÿ

n“0

un`i´1x
n`i´1

“ aix
k´i`1

pUpxq ` Pipxqq

where aix
k´i`1Pipxq of degree at most k

Upxq “ P 1pxq ` akxUpxq ` . . .` a1x
kUpxq

‚ Upxq “
P 1pxq

Qpxq
,

where Q is the reciprocal polynomial of the characteristic polynomial

xk ´ akx
k´1 ´ . . .´ a1 and 1´ akx ´ . . .´ a1x

k

p˚pxq “ xkpp1x q, so λ root of ppxq iff 1
λ root of p˚pxq
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Polynomially ambiguous ùñ eigenvalues are roots of rationals (1)

‚ Fix A polynomially ambiguous (trimmed) Σ “ tau

How do strongly connected components look like?

a, r1
a, r2

a, r3
a, r4

‚ Chained loops

qi loops in connected components

Initial state q1, final state q3
q1 q2 q3

‚ By previous lecture A is equivalent to a union of chained loops
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Polynomially ambiguous ùñ eigenvalues are roots of rationals (2)

Lemma

The formal series induced by a chained loop with 1 strongly connected compo-

nent is α
1´λx l

where α is the initial weight, λ is the product of weights and l

number of states.

Proof.

α

1´ λx l
“

8
ÿ

n“0

αpλx lqn α

λ

�

Definition

A1 and A2 chained loops. Their concatenation A “ A1A2 is the union of

states, where: the initial state is from A1; the final state is from A2 and merg-

ing the output of A1 and input of A2 into a transition
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Polynomially ambiguous ùñ eigenvalues are roots of rationals (3)

A1 2 A2 5 A1A2 2

3 1
5

3 1
5

5

Lemma

Let A1 and A2 chained loops and let S1 and S2 be their formal power series.

The formal power series of A1A2 is xS1S2.

Proof.

A1A2pnq “
n
ÿ

i“1

A1pi ´ 1qA2pn ´ iq “
n´1
ÿ

i“0

A1piqA2pn ´ i ´ 1q

8
ÿ

n“0

unx
n
¨

8
ÿ

n“0

vn´1x
n is equal to

8
ÿ

n“0

˜

n
ÿ

i“0

uivn´i´1

¸

xn
�
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Polynomially ambiguous ùñ eigenvalues are roots of rationals (4)

‚ Let A1 and A2 chained loops and let S1 and S2 be their formal power series.

The formal power series of A1 union A2 is S1 ` S2.

‚ By all lemmas the power series of a polynomial ambiguous automaton is Ppxq
Qpxq

where Qpxq “
ź

i

`

1´ λix
li
˘

and λi P Q

Notice that roots of Q are roots or λi

‚ If P and Q are coprime then Q is reciprocal of the characteristic polynomial

So roots of the characteristic polynomial are roots of 1
λi

�
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Eigenvalues are roots of rationals ùñ polynomially ambiguous (1)

Consider a sequence with eigenvalues that are root of rationals

‚ So formal power series Ppxq
Qpxq, where Qpxq “

ź

i

`

1´ λix
li
˘

‚ Polynomials with rational coefficients Qrxs are Euclidean

ùñ if P ,Q P Qrxs don’t share roots then there are R1,R2 P Q s.t.

R1P ` R2Q “ 1

‚ Let P “
`

1´ λx l
˘s

, Q “
´

1´ λ1x l
1
¯t 1

for λ ‰ λ1

There are R1, R2 s.t. R1P ` R2Q “ 1

‚ Then A
PQ “

ApR1P`R2Qq
PQ “

AR2
P `

AR1
Q

Filip Mazowiecki Automata and sequences 9 / 17
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Eigenvalues are roots of rationals ùñ polynomially ambiguous (2)

By induction
Ppxq

Qpxq
“

ÿ

i

Ai

p1´ λix liq
ti

‚ Polynomial ambiguous WA are closed under sum and shifts

It remains to prove that 1

p1´λix lq
t is polynomial ambiguous

‚
1

p1´ λix lq
t “

8
ÿ

n“0

ˆ

n ` t ´ 1

t

˙

λnx ln (tutorials)

�

Remark

Here we rely on Q. For example Fibonacci over R is finitely ambiguous because

Fn “ p
1`
?
5

2
?
5
qn ` p1´

?
5

2
?
5
qn
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The pN`8,min,`,8, 0q and pN´8,max,`,´8, 0q semirings

Can we proceed similarly over these semirings?

Theorem (Gaubert 1994, Lombardy 2001)

Fix a 1-letter alphabet and pN`8,min,`,8, 0q or pN´8,max,`,´8, 0q

semiring. Then Weighted automata are equivalent to unambiguous weighted

automata.

Proof.

Two steps:

1. From WA to finitely ambiguous WA

2. From finitely ambiguous WA to unambiguous WA

We do (1) now, (2) on tutorials
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From WA to finitely ambiguous WA (1)

Let A over with 1-letter alphabet over pN´8,max,`,´8, 0q (trimmed)

and let |Q| “ n

‚ A simple cycle is c “ pq0, . . . , qkq where qi pairwise different except q0 “ qk

Since there is one letter this uniquely determines a run on ak

Let valpcq be the sum (semiring product) of all values

Definition

Let ρ “ q0, . . . , qm be a run and let P “ tq0, . . . , qmu (the set of states with-

out repetitions). A simple cycle decomposition of ρ is obtained as follows: (1)

mark one state from P in ρ (these cannot be removed); (2) from the beginning

if you see a simple cycle remove it modulo (1); (3) stop when nothing can be

removed.
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From WA to finitely ambiguous WA (2)

q p p p r p q

q p p p r p qq p p r p qq p r p q

‚ In the end we get run of length at most n2 and multiplicity of simple cycles

Here: pq, p, r , p, qq and 2 simple cycles of pp, pq

‚ By putting back simple cycles (not necessarily in the same order)

we get a run of the same value

‚ Initially we had pq, p, p, p, r , p, qq we can get pq, p, r , p, p, p, qq

‚ A simple cycle decomposition is pρ, f q, where ρ is a run of size at most n2

and f : S Ñ N, where S is the set of all simple cycles

‚ We denote valpρ, f q the value of any run obtained from it
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From WA to finitely ambiguous WA (3)

Lemma

Fix a word am. For every run ρ there is a simple cycle decomposition on

pδ, f q such that: (1) at most one simple cycle occurs more than n times; (2)

valpδ, f q ě valpρq

Proof.

Let pρ1, f 1q be a simple cycle decomposition obtained from ρ

‚ If pρ1, f 1q satisfies (1) then we are done

Otherwise let σ and σ1 be simple cycles that occur t, t 1 ą n times.

Let k, k 1 ď n be their lengths

‚ Notice that k copies of σ1 and k 1 copies of σ have the same length

(bounded by n2)
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From WA to finitely ambiguous WA (4)

‚ Without loss of generality assume that kvalpσ1q ě k 1valpσq

‚ Remove k 1 copies of σ and add k copies of σ1

‚ We get a simple cycle decomposition whose value is the same or bigger

(on the same word am)

‚ Proceed until σ occurs at most n times

Proceed the same if there are two simple cycles that occur more than n times

�

‚ So for every maximal run there is a simple cycle decomposition with

the same weight, where at most one cycle occurs many times
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From WA to finitely ambiguous WA (5)

‚ The number of all simple cycles is exponential in n, say s

The construction is a big union of deterministic automata

‚ For every run of length t ď sn we construct:

1x 2 . . . t ´ 1 t
1 1

where x is the output for at

‚ For every P Ď Q and t ď sn and simple cycle σ

1x 2 . . . t ´ 1 t

. . .

1 1

1 valpσq

�

Filip Mazowiecki Automata and sequences 16 / 17



From WA to finitely ambiguous WA (5)

‚ The number of all simple cycles is exponential in n, say s

The construction is a big union of deterministic automata

‚ For every run of length t ď sn we construct:

1x 2 . . . t ´ 1 t
1 1

where x is the output for at

‚ For every P Ď Q and t ď sn and simple cycle σ

1x 2 . . . t ´ 1 t

. . .

1 1

1 valpσq

�

Filip Mazowiecki Automata and sequences 16 / 17



From WA to finitely ambiguous WA (5)

‚ The number of all simple cycles is exponential in n, say s

The construction is a big union of deterministic automata

‚ For every run of length t ď sn we construct:

1x 2 . . . t ´ 1 t
1 1

where x is the output for at

‚ For every P Ď Q and t ď sn and simple cycle σ

1x 2 . . . t ´ 1 t

. . .

1 1

1 valpσq

�

Filip Mazowiecki Automata and sequences 16 / 17



From WA to finitely ambiguous WA (5)

‚ The number of all simple cycles is exponential in n, say s

The construction is a big union of deterministic automata

‚ For every run of length t ď sn we construct:

1x 2 . . . t ´ 1 t
1 1

where x is the output for at

‚ For every P Ď Q and t ď sn and simple cycle σ

1x 2 . . . t ´ 1 t

. . .

1 1

1 valpσq

�

Filip Mazowiecki Automata and sequences 16 / 17



Final comments

‚ Changing the lemma to replace simple cycles with smaller ones

would prove this for pN`8,min,`,8, 0q (slide 14)

‚ To prove that the ambiguity hierarchy is strict

for pN`8,min,`,8, 0q and pN´8,max,`,´8, 0q we need at least 2 letters

‚ On tutorials you’ve already seen examples

(maximal number of a’s and b’s)

‚ Next week more details
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