Lecture 4

Ambiguity for 1-letter alphabets

Powered by BeamerikZ

The inclusions are strict for (Q, +, ·, 0, 1)
 even over 1-letter alphabet

Weighted automata (WA) UI Polynomially ambiguous WA UI Finitely ambiguous WA UI Unambiguous WA UI Deterministic WA

• The inclusions are strict for $(\mathbb{Q}, +, \cdot, 0, 1)$ Weighted automata (WA) even over 1-letter alphabet UI Polynomially ambiguous WA • Recall that WA = linear recursive sequences UI over 1-letter alphabet Finitely ambiguous WA UI Unambiguous WA UI Deterministic WA

• The inclusions are strict for $(\mathbb{Q}, +, \cdot, 0, 1)$ Weighted automata (WA) even over 1-letter alphabet UI Polynomially ambiguous WA • Recall that WA = linear recursive sequences UI over 1-letter alphabet Finitely ambiguous WA U • Each class corresponds to Unambiguous WA some class of sequences UI Deterministic WA

- The inclusions are strict for $(\mathbb{Q}, +, \cdot, 0, 1)$ Weighted automata (WA) even over 1-letter alphabet UI Polynomially ambiguous WA • Recall that WA = linear recursive sequences UI over 1-letter alphabet Finitely ambiguous WA U • Each class corresponds to Unambiguous WA some class of sequences UI Deterministic WA
- Most inclusions: tutorials

\bullet The inclusions are strict for $(\mathbb{Q},+,\cdot,0,1)$	Weighted automata (WA)
even over 1-letter alphabet	UI
	Polynomially ambiguous WA
• Recall that $WA =$ linear recursive sequences	UI
over 1-letter alphabet	Finitely ambiguous WA
	UI
 Each class corresponds to 	Unambiguous WA
some class of sequences	UI
	Deterministic WA
 Most inclusions: tutorials 	

• We focus on the most difficult one

Polynomially ambiguous sequences over $\ensuremath{\mathbb{Q}}$

Fix the semiring $(\mathbb{Q},+,\cdot,0,1)$

Theorem (Barloy et. al 2019)

Polynomial ambiguous WA over 1-letter alphabet = linear recursive sequences with eigenvalues that are roots of rational numbers.

Polynomially ambiguous sequences over ${\mathbb Q}$

Fix the semiring $(\mathbb{Q},+,\cdot,0,1)$

Theorem (Barloy et. al 2019)

Polynomial ambiguous WA over 1-letter alphabet = linear recursive sequences with eigenvalues that are roots of rational numbers.

• Roots of rational numbers: e.g. 2, 5 or $\sqrt{2}, -\sqrt[3]{4}$ or even i, i + 1. But not $1 + \sqrt{2}$

Polynomially ambiguous sequences over \mathbb{Q}

Fix the semiring $(\mathbb{Q},+,\cdot,0,1)$

Theorem (Barloy et. al 2019)

Polynomial ambiguous WA over 1-letter alphabet = linear recursive sequences with eigenvalues that are roots of rational numbers.

- Roots of rational numbers: e.g. 2, 5 or $\sqrt{2}, -\sqrt[3]{4}$ or even i, i + 1. But not $1 + \sqrt{2}$
- Eigenvalues of linear recursive sequences come from the recurrence. For example $F_{n+2} = F_{n+1} + F_n \rightsquigarrow x^2 - x - 1 = 0$.

Polynomially ambiguous sequences over \mathbb{Q}

Fix the semiring $(\mathbb{Q},+,\cdot,0,1)$

Theorem (Barloy et. al 2019)

Polynomial ambiguous WA over 1-letter alphabet = linear recursive sequences with eigenvalues that are roots of rational numbers.

- Roots of rational numbers: e.g. 2, 5 or $\sqrt{2}, -\sqrt[3]{4}$ or even i, i + 1. But not $1 + \sqrt{2}$
- Eigenvalues of linear recursive sequences come from the recurrence. For example $F_{n+2} = F_{n+1} + F_n \rightsquigarrow x^2 - x - 1 = 0$.

Polynomially ambiguous sequences over \mathbb{Q}

Fix the semiring $(\mathbb{Q},+,\cdot,0,1)$

Theorem (Barloy et. al 2019)

Polynomial ambiguous WA over 1-letter alphabet = linear recursive sequences with eigenvalues that are roots of rational numbers.

- Roots of rational numbers: e.g. 2, 5 or $\sqrt{2}, -\sqrt[3]{4}$ or even i, i + 1. But not $1 + \sqrt{2}$
- Eigenvalues of linear recursive sequences come from the recurrence. For example $F_{n+2} = F_{n+1} + F_n \rightsquigarrow x^2 - x - 1 = 0$.

Corollary

Fibonacci sequence is not definable by polynomially ambiguous WA.

For example $u_n = 1$

$$U(x) = \sum_{n=0}^{\infty} u_n \cdot x^n = \sum_{n=0}^{\infty} 1 \cdot x^n = \frac{1}{1-x}$$

For example $u_n = 1$

$$U(x) = \sum_{n=0}^{\infty} u_n \cdot x^n = \sum_{n=0}^{\infty} 1 \cdot x^n = \frac{1}{1-x}$$

• For Fibonacci we know

$$F(x) = x + xF(x) + x^2F(x) \quad \rightsquigarrow \quad F(x) = \frac{x}{1 - x - x^2}$$

For example $u_n = 1$

$$U(x) = \sum_{n=0}^{\infty} u_n \cdot x^n = \sum_{n=0}^{\infty} 1 \cdot x^n = \frac{1}{1-x}$$

• For Fibonacci we know

$$F(x) = x + xF(x) + x^2F(x) \iff F(x) = \frac{x}{1 - x - x^2}$$

• In general if $u_{n+k} = a_k u_{n+k-1} + a_{k-1} u_{n+k-1} + \dots + a_1 u_n$

$$U(x) = \sum_{n=0}^{\infty} u_n x^n = P(x) + \sum_{n=0}^{\infty} u_{n+k} x^{n+k} = P(x) + x^k \sum_{n=0}^{\infty} u_{n+k} x^n$$

where P(x) of degree at most k

For example $u_n = 1$

$$U(x) = \sum_{n=0}^{\infty} u_n \cdot x^n = \sum_{n=0}^{\infty} 1 \cdot x^n = \frac{1}{1-x}$$

• For Fibonacci we know

$$F(x) = x + xF(x) + x^2F(x) \quad \rightsquigarrow \quad F(x) = \frac{x}{1 - x - x^2}$$

• In general if $u_{n+k} = a_k u_{n+k-1} + a_{k-1} u_{n+k-1} + \dots + a_1 u_n$

$$U(x) = \sum_{n=0}^{\infty} u_n x^n = P(x) + \sum_{n=0}^{\infty} u_{n+k} x^{n+k} = P(x) + x^k \sum_{n=0}^{\infty} u_{n+k} x^n$$

where P(x) of degree at most k

$$\sum_{n=0}^{\infty} u_{n+k} x^n = \sum_{n=0}^{\infty} (a_k u_{n+k-1} + a_{k-1} u_{n+k-1} + \dots + a_1 u_n) x^n$$

Filip Mazowiecki A

Automata and sequences

$$U(x) = P(x) + x^{k} \sum_{n=0}^{\infty} (a_{k}u_{n+k-1} + a_{k-1}u_{n+k-1} + \dots + a_{1}u_{n})x^{n}$$

$$U(x) = P(x) + x^{k} \sum_{n=0}^{\infty} (a_{k}u_{n+k-1} + a_{k-1}u_{n+k-1} + \dots + a_{1}u_{n})x^{n}$$
$$x^{k} \sum_{n=0}^{\infty} a_{i}u_{n+i-1}x^{n} = a_{i}x^{k-i+1} \sum_{n=0}^{\infty} u_{n+i-1}x^{n+i-1} = a_{i}x^{k-i+1}(U(x) + P_{i}(x))$$

where $a_i x^{k-i+1} P_i(x)$ of degree at most k

$$U(x) = P(x) + x^{k} \sum_{n=0}^{\infty} (a_{k}u_{n+k-1} + a_{k-1}u_{n+k-1} + \dots + a_{1}u_{n})x^{n}$$
$$x^{k} \sum_{n=0}^{\infty} a_{i}u_{n+i-1}x^{n} = a_{i}x^{k-i+1} \sum_{n=0}^{\infty} u_{n+i-1}x^{n+i-1} = a_{i}x^{k-i+1}(U(x) + P_{i}(x))$$

where $a_i x^{k-i+1} P_i(x)$ of degree at most k

$$U(x) = P'(x) + a_k x U(x) + \ldots + a_1 x^k U(x)$$

$$U(x) = P(x) + x^{k} \sum_{n=0}^{\infty} (a_{k}u_{n+k-1} + a_{k-1}u_{n+k-1} + \dots + a_{1}u_{n})x^{n}$$
$$x^{k} \sum_{n=0}^{\infty} a_{i}u_{n+i-1}x^{n} = a_{i}x^{k-i+1} \sum_{n=0}^{\infty} u_{n+i-1}x^{n+i-1} = a_{i}x^{k-i+1}(U(x) + P_{i}(x))$$

where $a_i x^{k-i+1} P_i(x)$ of degree at most k

$$U(x) = P'(x) + a_k x U(x) + \ldots + a_1 x^k U(x)$$

•
$$U(x) = \frac{P'(x)}{Q(x)}$$
,

where Q is the reciprocal polynomial of the characteristic polynomial

$$U(x) = P(x) + x^{k} \sum_{n=0}^{\infty} (a_{k}u_{n+k-1} + a_{k-1}u_{n+k-1} + \dots + a_{1}u_{n})x^{n}$$
$$x^{k} \sum_{n=0}^{\infty} a_{i}u_{n+i-1}x^{n} = a_{i}x^{k-i+1} \sum_{n=0}^{\infty} u_{n+i-1}x^{n+i-1} = a_{i}x^{k-i+1}(U(x) + P_{i}(x))$$

where $a_i x^{k-i+1} P_i(x)$ of degree at most k

$$U(x) = P'(x) + a_k x U(x) + \ldots + a_1 x^k U(x)$$

•
$$U(x) = \frac{P'(x)}{Q(x)}$$
,

where Q is the reciprocal polynomial of the characteristic polynomial

$$x^{k} - a_{k}x^{k-1} - \ldots - a_{1}$$
 and $1 - a_{k}x - \ldots - a_{1}x^{k}$

$$U(x) = P(x) + x^{k} \sum_{n=0}^{\infty} (a_{k}u_{n+k-1} + a_{k-1}u_{n+k-1} + \dots + a_{1}u_{n})x^{n}$$
$$x^{k} \sum_{n=0}^{\infty} a_{i}u_{n+i-1}x^{n} = a_{i}x^{k-i+1} \sum_{n=0}^{\infty} u_{n+i-1}x^{n+i-1} = a_{i}x^{k-i+1}(U(x) + P_{i}(x))$$

where $a_i x^{k-i+1} P_i(x)$ of degree at most k

$$U(x) = P'(x) + a_k x U(x) + \ldots + a_1 x^k U(x)$$

•
$$U(x) = \frac{P'(x)}{Q(x)}$$
,

where Q is the reciprocal polynomial of the characteristic polynomial

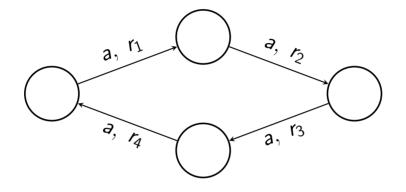
$$x^{k} - a_{k}x^{k-1} - \ldots - a_{1}$$
 and $1 - a_{k}x - \ldots - a_{1}x^{k}$

 $p^*(x) = x^k p(\frac{1}{x})$, so λ root of p(x) iff $\frac{1}{\lambda}$ root of $p^*(x)$

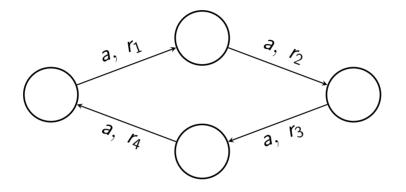
Filip Mazowiecki Automata and sequences

Fix A polynomially ambiguous (trimmed) Σ = {a}
 How do strongly connected components look like?

Fix A polynomially ambiguous (trimmed) Σ = {a}
 How do strongly connected components look like?

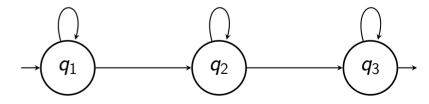


Fix A polynomially ambiguous (trimmed) Σ = {a}
 How do strongly connected components look like?

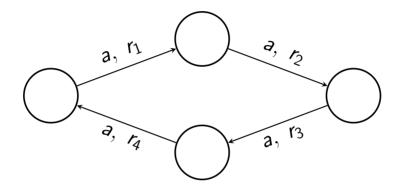


• Chained loops

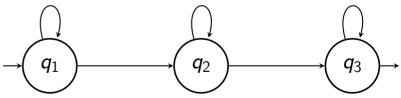
 q_i loops in connected components Initial state q_1 , final state q_3



Fix A polynomially ambiguous (trimmed) Σ = {a}
 How do strongly connected components look like?



• Chained loops q_i loops in connected components Initial state q_1 , final state q_3



 \bullet By previous lecture ${\cal A}$ is equivalent to a union of chained loops

Lemma

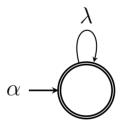
The formal series induced by a chained loop with 1 strongly connected component is $\frac{\alpha}{1-\lambda x^{l}}$ where α is the initial weight, λ is the product of weights and l number of states.

Lemma

The formal series induced by a chained loop with 1 strongly connected component is $\frac{\alpha}{1-\lambda x^{l}}$ where α is the initial weight, λ is the product of weights and l number of states.

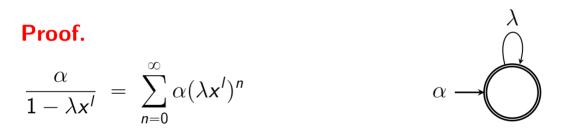
Proof.

$$\frac{\alpha}{1-\lambda x^{\prime}} = \sum_{n=0}^{\infty} \alpha (\lambda x^{\prime})^n$$



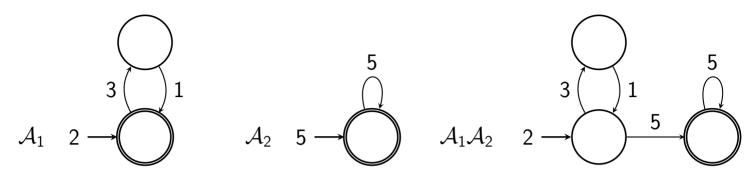
Lemma

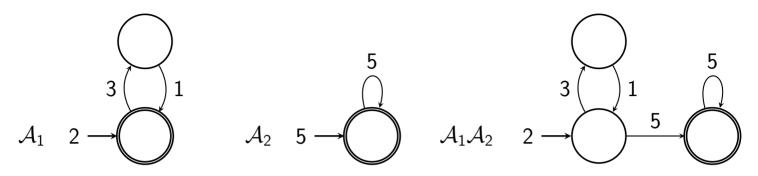
The formal series induced by a chained loop with 1 strongly connected component is $\frac{\alpha}{1-\lambda x^{l}}$ where α is the initial weight, λ is the product of weights and l number of states.



Definition

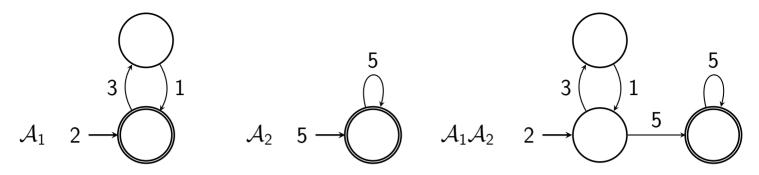
 \mathcal{A}_1 and \mathcal{A}_2 chained loops. Their concatenation $\mathcal{A} = \mathcal{A}_1 \mathcal{A}_2$ is the union of states, where: the initial state is from \mathcal{A}_1 ; the final state is from \mathcal{A}_2 and merging the output of \mathcal{A}_1 and input of \mathcal{A}_2 into a transition





Lemma

Let A_1 and A_2 chained loops and let S_1 and S_2 be their formal power series. The formal power series of A_1A_2 is xS_1S_2 .

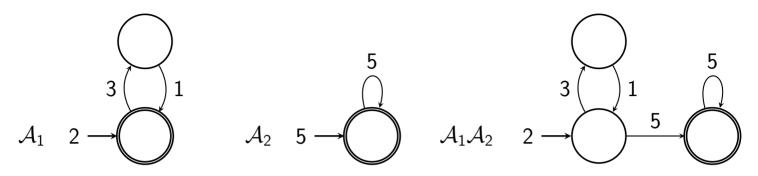


Lemma

Let A_1 and A_2 chained loops and let S_1 and S_2 be their formal power series. The formal power series of A_1A_2 is xS_1S_2 .

Proof.

$$\mathcal{A}_1 \mathcal{A}_2(n) = \sum_{i=1}^n \mathcal{A}_1(i-1) \mathcal{A}_2(n-i) = \sum_{i=0}^{n-1} \mathcal{A}_1(i) \mathcal{A}_2(n-i-1)$$



Lemma

Let A_1 and A_2 chained loops and let S_1 and S_2 be their formal power series. The formal power series of A_1A_2 is xS_1S_2 .

Proof.

$$\mathcal{A}_1 \mathcal{A}_2(n) = \sum_{i=1}^n \mathcal{A}_1(i-1) \mathcal{A}_2(n-i) = \sum_{i=0}^{n-1} \mathcal{A}_1(i) \mathcal{A}_2(n-i-1)$$
$$\sum_{n=0}^\infty u_n x^n \cdot \sum_{n=0}^\infty v_{n-1} x^n \quad \text{is equal to} \quad \sum_{n=0}^\infty \left(\sum_{i=0}^n u_i v_{n-i-1}\right) x^n$$

Filip Mazowiecki

Automata and sequences

Let A₁ and A₂ chained loops and let S₁ and S₂ be their formal power series.
 The formal power series of A₁ union A₂ is S₁ + S₂.

- Let A₁ and A₂ chained loops and let S₁ and S₂ be their formal power series.
 The formal power series of A₁ union A₂ is S₁ + S₂.
- By all lemmas the power series of a polynomial ambiguous automaton is $\frac{P(x)}{Q(x)}$

where
$$Q(x) = \prod_{i} (1 - \lambda_i x^{l_i})$$
 and $\lambda_i \in \mathbb{Q}$

- Let A₁ and A₂ chained loops and let S₁ and S₂ be their formal power series.
 The formal power series of A₁ union A₂ is S₁ + S₂.
- By all lemmas the power series of a polynomial ambiguous automaton is $\frac{P(x)}{Q(x)}$

where
$$Q(x) = \prod_{i} (1 - \lambda_i x^{l_i})$$
 and $\lambda_i \in \mathbb{Q}$

Notice that roots of Q are roots or λ_i

- Let A₁ and A₂ chained loops and let S₁ and S₂ be their formal power series. The formal power series of A₁ union A₂ is S₁ + S₂.
- By all lemmas the power series of a polynomial ambiguous automaton is P(x)/Q(x)
 where Q(x) = ∏_i (1 λ_ix^{l_i}) and λ_i ∈ Q
 Notice that roots of Q are roots or λ_i
- If P and Q are coprime then Q is reciprocal of the characteristic polynomial So roots of the characteristic polynomial are roots of ¹/_{λi}

Consider a sequence with eigenvalues that are root of rationals

Consider a sequence with eigenvalues that are root of rationals

• So formal power series $\frac{P(x)}{Q(x)}$, where $Q(x) = \prod_{i} (1 - \lambda_i x^{l_i})$

Consider a sequence with eigenvalues that are root of rationals

- So formal power series $\frac{P(x)}{Q(x)}$, where $Q(x) = \prod_{i} (1 \lambda_i x^{l_i})$
- Polynomials with rational coefficients $\mathbb{Q}[x]$ are Euclidean \implies if $P, Q \in \mathbb{Q}[x]$ don't share roots then there are $R_1, R_2 \in \mathbb{Q}$ s.t. $R_1P + R_2Q = 1$

Consider a sequence with eigenvalues that are root of rationals

• So formal power series
$$\frac{P(x)}{Q(x)}$$
, where $Q(x) = \prod_{i} (1 - \lambda_i x^{l_i})$

• Polynomials with rational coefficients $\mathbb{Q}[x]$ are Euclidean \implies if $P, Q \in \mathbb{Q}[x]$ don't share roots then there are $R_1, R_2 \in \mathbb{Q}$ s.t. $R_1P + R_2Q = 1$

• Let
$$P = (1 - \lambda x')^s$$
, $Q = (1 - \lambda' x'')^{t'}$ for $\lambda \neq \lambda'$
There are R_1 , R_2 s.t. $R_1P + R_2Q = 1$

Consider a sequence with eigenvalues that are root of rationals

• So formal power series
$$\frac{P(x)}{Q(x)}$$
, where $Q(x) = \prod_{i} (1 - \lambda_i x^{l_i})$

• Polynomials with rational coefficients $\mathbb{Q}[x]$ are Euclidean \implies if $P, Q \in \mathbb{Q}[x]$ don't share roots then there are $R_1, R_2 \in \mathbb{Q}$ s.t. $R_1P + R_2Q = 1$

• Let
$$P = (1 - \lambda x')^s$$
, $Q = (1 - \lambda' x'')^{t'}$ for $\lambda \neq \lambda'$
There are R_1 , R_2 s.t. $R_1P + R_2Q = 1$

• Then
$$\frac{A}{PQ} = \frac{A(R_1P+R_2Q)}{PQ} = \frac{AR_2}{P} + \frac{AR_1}{Q}$$

By induction
$$\frac{P(x)}{Q(x)} = \sum_{i} \frac{A_i}{(1 - \lambda_i x^{l_i})^{t_i}}$$

By induction
$$\frac{P(x)}{Q(x)} = \sum_{i} \frac{A_i}{(1 - \lambda_i x^{l_i})^{t_i}}$$

• Polynomial ambiguous WA are closed under sum and shifts It remains to prove that $\frac{1}{(1-\lambda_i x^l)^t}$ is polynomial ambiguous

By induction
$$\frac{P(x)}{Q(x)} = \sum_{i} \frac{A_i}{(1 - \lambda_i x^{l_i})^{t_i}}$$

• Polynomial ambiguous WA are closed under sum and shifts It remains to prove that $\frac{1}{(1-\lambda_i x^l)^t}$ is polynomial ambiguous

•
$$\frac{1}{\left(1-\lambda_{i}x'\right)^{t}} = \sum_{n=0}^{\infty} \binom{n+t-1}{t} \lambda^{n}x'^{n}$$
 (tutorials)

By induction
$$\frac{P(x)}{Q(x)} = \sum_{i} \frac{A_i}{(1 - \lambda_i x^{l_i})^{t_i}}$$

• Polynomial ambiguous WA are closed under sum and shifts It remains to prove that $\frac{1}{(1-\lambda_i x^l)^t}$ is polynomial ambiguous

•
$$\frac{1}{\left(1-\lambda_{i}x^{\prime}\right)^{t}}=\sum_{n=0}^{\infty}\binom{n+t-1}{t}\lambda^{n}x^{\prime n}$$
 (tutorials)

Remark

Here we rely on \mathbb{Q} . For example Fibonacci over \mathbb{R} is finitely ambiguous because $F_n = \left(\frac{1+\sqrt{5}}{2\sqrt{5}}\right)^n + \left(\frac{1-\sqrt{5}}{2\sqrt{5}}\right)^n$

Can we proceed similarly over these semirings?

Can we proceed similarly over these semirings?

Theorem (Gaubert 1994, Lombardy 2001)

Fix a 1-letter alphabet and $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ or $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$ semiring. Then Weighted automata are equivalent to unambiguous weighted automata.

Can we proceed similarly over these semirings?

Theorem (Gaubert 1994, Lombardy 2001)

Fix a 1-letter alphabet and $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ or $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$ semiring. Then Weighted automata are equivalent to unambiguous weighted automata.

Proof.

Two steps:

- 1. From WA to finitely ambiguous WA
- 2. From finitely ambiguous WA to unambiguous WA

Can we proceed similarly over these semirings?

Theorem (Gaubert 1994, Lombardy 2001)

Fix a 1-letter alphabet and $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ or $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$ semiring. Then Weighted automata are equivalent to unambiguous weighted automata.

Proof.

Two steps:

- 1. From WA to finitely ambiguous WA
- 2. From finitely ambiguous WA to unambiguous WA

We do (1) now, (2) on tutorials

Let \mathcal{A} over with 1-letter alphabet over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$ (trimmed) and let $|\mathcal{Q}| = n$

Let $\mathcal A$ over with 1-letter alphabet over $(\mathbb N_{-\infty}, \max, +, -\infty, 0)$ (trimmed) and let $|\mathcal Q| = n$

A simple cycle is c = (q₀,...,q_k) where q_i pairwise different except q₀ = q_k
 Since there is one letter this uniquely determines a run on a^k
 Let val(c) be the sum (semiring product) of all values

Let \mathcal{A} over with 1-letter alphabet over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$ (trimmed) and let |Q| = n

A simple cycle is c = (q₀,...,q_k) where q_i pairwise different except q₀ = q_k
 Since there is one letter this uniquely determines a run on a^k
 Let val(c) be the sum (semiring product) of all values

Definition

Let $\rho = q_0, \ldots, q_m$ be a run and let $P = \{q_0, \ldots, q_m\}$ (the set of states without repetitions). A simple cycle decomposition of ρ is obtained as follows: (1) mark one state from P in ρ (these cannot be removed); (2) from the beginning if you see a simple cycle remove it modulo (1); (3) stop when nothing can be removed.

p p p r p q

q

Filip Mazowiecki Automata and sequences

<mark>р р р г</mark> р q

q

Filip Mazowiecki Automata and sequences

q

р

р <mark>г</mark> р q

Filip Mazowiecki Automata and sequences

- *q p r p q*
- In the end we get run of length at most n² and multiplicity of simple cycles
 Here: (q, p, r, p, q) and 2 simple cycles of (p, p)

- *q p r p q*
- In the end we get run of length at most n² and multiplicity of simple cycles
 Here: (q, p, r, p, q) and 2 simple cycles of (p, p)
- By putting back simple cycles (not necessarily in the same order) we get a run of the same value

- *q p r p q*
- In the end we get run of length at most n² and multiplicity of simple cycles
 Here: (q, p, r, p, q) and 2 simple cycles of (p, p)
- By putting back simple cycles (not necessarily in the same order) we get a run of the same value
- Initially we had (q, p, p, p, r, p, q) we can get (q, p, r, p, p, q, q)

- *q p r p q*
- In the end we get run of length at most n² and multiplicity of simple cycles
 Here: (q, p, r, p, q) and 2 simple cycles of (p, p)
- By putting back simple cycles (not necessarily in the same order) we get a run of the same value
- Initially we had (q, p, p, p, r, p, q) we can get (q, p, r, p, p, q, q)
- A simple cycle decomposition is (ρ, f), where ρ is a run of size at most n² and f : S → N, where S is the set of all simple cycles

- *q p r p q*
- In the end we get run of length at most n² and multiplicity of simple cycles
 Here: (q, p, r, p, q) and 2 simple cycles of (p, p)
- By putting back simple cycles (not necessarily in the same order) we get a run of the same value
- Initially we had (q, p, p, p, r, p, q) we can get (q, p, r, p, p, p, q)
- A simple cycle decomposition is (ρ, f), where ρ is a run of size at most n² and f : S → N, where S is the set of all simple cycles
- We denote $\mathit{val}(\rho, f)$ the value of any run obtained from it

Lemma

Fix a word a^m . For every run ρ there is a simple cycle decomposition on (δ , f) such that: (1) at most one simple cycle occurs more than n times; (2) $val(\delta, f) \ge val(\rho)$

Lemma

Fix a word a^m . For every run ρ there is a simple cycle decomposition on (δ, f) such that: (1) at most one simple cycle occurs more than *n* times; (2) $val(\delta, f) \ge val(\rho)$

Proof.

Let (ρ', f') be a simple cycle decomposition obtained from ρ

Lemma

Fix a word a^m . For every run ρ there is a simple cycle decomposition on (δ, f) such that: (1) at most one simple cycle occurs more than n times; (2) $val(\delta, f) \ge val(\rho)$

Proof.

Let (ρ', f') be a simple cycle decomposition obtained from ρ

If (ρ', f') satisfies (1) then we are done
 Otherwise let σ and σ' be simple cycles that occur t, t' > n times.
 Let k, k' ≤ n be their lengths

Lemma

Fix a word a^m . For every run ρ there is a simple cycle decomposition on (δ, f) such that: (1) at most one simple cycle occurs more than *n* times; (2) $val(\delta, f) \ge val(\rho)$

Proof.

Let (ρ',f') be a simple cycle decomposition obtained from ρ

- If (ρ', f') satisfies (1) then we are done
 Otherwise let σ and σ' be simple cycles that occur t, t' > n times.
 Let k, k' ≤ n be their lengths
- Notice that k copies of σ' and k' copies of σ have the same length (bounded by n²)

• Without loss of generality assume that $kval(\sigma') \ge k'val(\sigma)$

- Without loss of generality assume that $kval(\sigma') \ge k'val(\sigma)$
- Remove k' copies of σ and add k copies of σ'

- Without loss of generality assume that $kval(\sigma') \ge k'val(\sigma)$
- Remove k' copies of σ and add k copies of σ'
- We get a simple cycle decomposition whose value is the same or bigger (on the same word a^m)

- Without loss of generality assume that $kval(\sigma') \ge k'val(\sigma)$
- Remove k' copies of σ and add k copies of σ'
- We get a simple cycle decomposition whose value is the same or bigger (on the same word a^m)
- Proceed until σ occurs at most n times
 Proceed the same if there are two simple cycles that occur more than n times

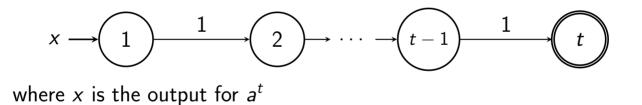
- Without loss of generality assume that $kval(\sigma') \ge k'val(\sigma)$
- Remove k' copies of σ and add k copies of σ'
- We get a simple cycle decomposition whose value is the same or bigger (on the same word a^m)
- Proceed until σ occurs at most n times
 Proceed the same if there are two simple cycles that occur more than n times

• So for every maximal run there is a simple cycle decomposition with the same weight, where at most one cycle occurs many times

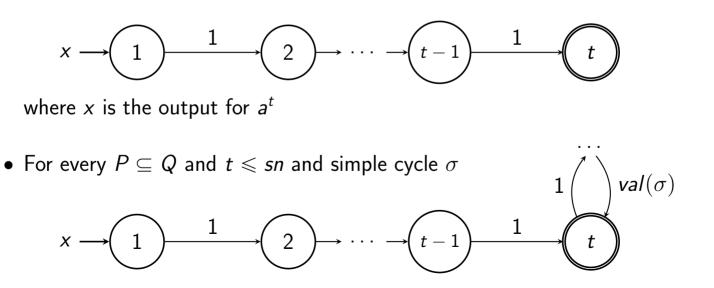
• The number of all simple cycles is exponential in n, say s

• The number of all simple cycles is exponential in *n*, say *s* The construction is a big union of deterministic automata

- The number of all simple cycles is exponential in *n*, say *s* The construction is a big union of deterministic automata
- For every run of length $t \leq sn$ we construct:



- The number of all simple cycles is exponential in *n*, say *s* The construction is a big union of deterministic automata
- For every run of length $t \leq sn$ we construct:



Final comments

• Changing the lemma to replace simple cycles with smaller ones would prove this for $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ (slide 14)

Final comments

- Changing the lemma to replace simple cycles with smaller ones would prove this for $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ (slide 14)
- To prove that the ambiguity hierarchy is strict for $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ and $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$ we need at least 2 letters

Final comments

- Changing the lemma to replace simple cycles with smaller ones would prove this for $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ (slide 14)
- To prove that the ambiguity hierarchy is strict for $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ and $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$ we need at least 2 letters
- On tutorials you've already seen examples (maximal number of a's and b's)
- Next week more details