Lecture 5

Ambiguity for the max plus semiring

Powered by BeamerikZ

Hierarchy of classes for weighted automata

• The inclusions are strict for $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ and $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Weighted automata (WA) UI Polynomially ambiguous WA UI Finitely ambiguous WA UI Unambiguous WA UI Deterministic WA

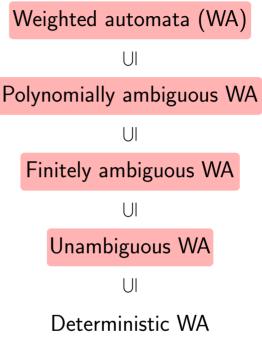
Hierarchy of classes for weighted automata

- The inclusions are strict for $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ and $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$
- Not over 1-letter alphabet (last lecture)

Weighted automata (WA) UI Polynomially ambiguous WA UI Finitely ambiguous WA U Unambiguous WA UI Deterministic WA

Hierarchy of classes for weighted automata

- The inclusions are strict for $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ and $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$
- Not over 1-letter alphabet (last lecture)



• We focus on $(\mathbb{N}_{-\infty}, \max, +, -\infty, \mathbf{0})$

unambiguous, finitely ambiguous and polynomially ambiguous

How to prove $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular?

How to prove $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular?

• Pumping argument: let $w \in L$ and |w| big enough Then w = xyz such that $xy^i z \in L$ for some $y \neq \epsilon$ and all $i \in \mathbb{N}$

How to prove $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular?

- Pumping argument: let $w \in L$ and |w| big enough Then w = xyz such that $xy^i z \in L$ for some $y \neq \epsilon$ and all $i \in \mathbb{N}$
- By a case analysis $y \in a^*$, $y \in a^*b^*$ or $y \in b^*$ contradiction

How to prove $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular?

- Pumping argument: let $w \in L$ and |w| big enough Then w = xyz such that $xy^i z \in L$ for some $y \neq \epsilon$ and all $i \in \mathbb{N}$
- By a case analysis $y \in a^*$, $y \in a^*b^*$ or $y \in b^*$ contradiction
- Pumping lemmas for weighted automata?

How to prove $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular?

- Pumping argument: let $w \in L$ and |w| big enough Then w = xyz such that $xy^i z \in L$ for some $y \neq \epsilon$ and all $i \in \mathbb{N}$
- By a case analysis $y \in a^*$, $y \in a^*b^*$ or $y \in b^*$ contradiction
- Pumping lemmas for weighted automata?
- Fix $u \cdot v \cdot w \in \Sigma^*$

We say that $\hat{u} \cdot \underline{\hat{v}} \cdot \hat{w} \in \Sigma^*$, is a *refinement* of $u \cdot \underline{v} \cdot w$ if **1.** $u \cdot v \cdot w = \hat{u} \cdot \hat{v} \cdot \hat{w}$

How to prove $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular?

- Pumping argument: let $w \in L$ and |w| big enough Then w = xyz such that $xy^i z \in L$ for some $y \neq \epsilon$ and all $i \in \mathbb{N}$
- By a case analysis $y \in a^*$, $y \in a^*b^*$ or $y \in b^*$ contradiction
- Pumping lemmas for weighted automata?
- Fix $u \cdot v \cdot w \in \Sigma^*$

We say that $\hat{u} \cdot \underline{\hat{v}} \cdot \hat{w} \in \Sigma^*$, is a *refinement* of $u \cdot \underline{v} \cdot w$ if

1. $u \cdot v \cdot w = \hat{u} \cdot \hat{v} \cdot \hat{w}$

2. there exist u', w' such that $u \cdot u' = \hat{u}, w' \cdot w = \hat{w}, u' \cdot \hat{v} \cdot w' = v$, and $\hat{v} \neq \epsilon$.

How to prove $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular?

- Pumping argument: let $w \in L$ and |w| big enough Then w = xyz such that $xy^i z \in L$ for some $y \neq \epsilon$ and all $i \in \mathbb{N}$
- By a case analysis $y \in a^*$, $y \in a^*b^*$ or $y \in b^*$ contradiction
- Pumping lemmas for weighted automata?
- Fix $u \cdot v \cdot w \in \Sigma^*$

We say that $\hat{u} \cdot \underline{\hat{v}} \cdot \hat{w} \in \Sigma^*$, is a *refinement* of $u \cdot \underline{v} \cdot w$ if

- **1.** $u \cdot v \cdot w = \hat{u} \cdot \hat{v} \cdot \hat{w}$
- **2.** there exist u', w' such that $u \cdot u' = \hat{u}, w' \cdot w = \hat{w}, u' \cdot \hat{v} \cdot w' = v$, and $\hat{v} \neq \epsilon$. Example: $aab \cdot \underline{bb} \cdot ba$ refines $aa \cdot bbbb \cdot a$

Fix the semiring $(\mathbb{N}_{-\infty}, \mathsf{max}, +, -\infty, \mathbf{0})$

Fix the semiring $(\mathbb{N}_{-\infty}, \max, +, -\infty, \mathbf{0})$

Theorem (M. and Riveros 2018)

Let $f : \Sigma^* \to \mathbb{N} \cup \{-\infty\}$ be definable by unambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$. There exists N such that for all words of the form $u \cdot v \cdot w \in \Sigma^*$ with $|v| \ge N$, $v \ne \epsilon$, there exists a refinement $\hat{u} \cdot \underline{\hat{v}} \cdot \hat{w}$ of $u \cdot \underline{v} \cdot w$ such that one of the conditions holds: (1) $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$. (2) $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.

Fix the semiring $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Theorem (M. and Riveros 2018)

Let $f : \Sigma^* \to \mathbb{N} \cup \{-\infty\}$ be definable by unambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$. There exists N such that for all words of the form $u \cdot v \cdot w \in \Sigma^*$ with $|v| \ge N$, $v \ne \epsilon$, there exists a refinement $\hat{u} \cdot \underline{\hat{v}} \cdot \hat{w}$ of $u \cdot \underline{v} \cdot w$ such that one of the conditions holds: (1) $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$. (2) $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.

• Example: $f(w) = \max(\#_a(w), \#_b(w))$, fix N from the lemma

Fix the semiring $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Theorem (M. and Riveros 2018)

Let $f : \Sigma^* \to \mathbb{N} \cup \{-\infty\}$ be definable by unambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$. There exists N such that for all words of the form $u \cdot v \cdot w \in \Sigma^*$ with $|v| \ge N$, $v \ne \epsilon$, there exists a refinement $\hat{u} \cdot \underline{\hat{v}} \cdot \hat{w}$ of $u \cdot \underline{v} \cdot w$ such that one of the conditions holds: (1) $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$. (2) $f(\hat{u} \cdot \hat{v}^i \cdot \hat{w}) < f(\hat{u} \cdot \hat{v}^{i+1} \cdot \hat{w})$ for every $i \ge N$.

• Example: $f(w) = \max(\#_a(w), \#_b(w))$, fix N from the lemma $f(a^{(N+1)^2} \cdot b^N \cdot \epsilon) = (N+1)^2$, refining $a^{(N+1)^2} \cdot b^N$ we get $a^{(N+1)^2}b^n \cdot \underline{b}^m \cdot b^l$

Fix the semiring $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Theorem (M. and Riveros 2018)

Let $f : \Sigma^* \to \mathbb{N} \cup \{-\infty\}$ be definable by unambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$. There exists N such that for all words of the form $u \cdot v \cdot w \in \Sigma^*$ with $|v| \ge N$, $v \ne \epsilon$, there exists a refinement $\hat{u} \cdot \underline{\hat{v}} \cdot \hat{w}$ of $u \cdot \underline{v} \cdot w$ such that one of the conditions holds: (1) $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$. (2) $f(\hat{u} \cdot \hat{v}^i \cdot \hat{w}) < f(\hat{u} \cdot \hat{v}^{i+1} \cdot \hat{w})$ for every $i \ge N$.

- Example: $f(w) = \max(\#_a(w), \#_b(w))$, fix N from the lemma $f(a^{(N+1)^2} \cdot b^N \cdot \epsilon) = (N+1)^2$, refining $a^{(N+1)^2} \cdot b^N$ we get $a^{(N+1)^2}b^n \cdot \underline{b}^m \cdot b^l$
- Since $n + mN + l < (N + 1)^2$ then (1). But for *i* big enough (2)

Corollary

Unambiguous WA \subsetneq finitely ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Corollary

Unambiguous WA \subsetneq finitely ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Proof.

Let \mathcal{A} unambiguous automaton defining f. And let *uvw* with $v \ge N >> 2^{|Q|}$

Corollary

Unambiguous WA \subsetneq finitely ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, \mathbf{0})$

Proof.

Let \mathcal{A} unambiguous automaton defining f. And let *uvw* with $v \ge N >> 2^{|Q|}$

if f(uvw) > -∞ then there is a unique accepting run on uvw
 Let q₀,..., q_{|v|} be the set of states on v

Corollary

Unambiguous WA \subsetneq finitely ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, \mathbf{0})$

Proof.

Let \mathcal{A} unambiguous automaton defining f. And let *uvw* with $v \ge N >> 2^{|Q|}$

if f(uvw) > -∞ then there is a unique accepting run on uvw
 Let q₀,..., q_{|v|} be the set of states on v

There is a cycle $\rho = q_i, \ldots, q_j$ for i < jIf the value on ρ is 0 then (1) otherwise (2)

Corollary

Unambiguous WA \subsetneq finitely ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, \mathbf{0})$

Proof.

Let \mathcal{A} unambiguous automaton defining f. And let *uvw* with $v \ge N >> 2^{|Q|}$

if f(uvw) > -∞ then there is a unique accepting run on uvw
 Let q₀,..., q_{|v|} be the set of states on v

There is a cycle $\rho = q_i, \ldots, q_j$ for i < jIf the value on ρ is 0 then (1) otherwise (2)

 if f(uvw) = -∞ then since there is at most n = exp(|Q|) runs on uvw (A is unambiguous)

We can present all runs on v as sequences

 $(q_{0,1},\ldots,q_{0,n}),\ldots,(q_{|v|,1},\ldots,q_{|v|,n})$

We can present all runs on v as sequences

$$(q_{0,1},\ldots,q_{0,n}),\ldots,(q_{|v|,1},\ldots,q_{|v|,n})$$

• For |v| big enough there is i < j such that

$$(q_{i,1},\ldots,q_{i,n})=(q_{j,1},\ldots,q_{j,n})$$

We can present all runs on v as sequences

$$(q_{0,1},\ldots,q_{0,n}),\ldots,(q_{|v|,1},\ldots,q_{|v|,n})$$

• For |v| big enough there is i < j such that

$$(q_{i,1},\ldots,q_{i,n})=(q_{j,1},\ldots,q_{j,n})$$

 Then *i* to *j* is a cycle for all old runs the output for *uvⁱw* for all runs 1,..., *n* remain −∞

We can present all runs on v as sequences

$$(q_{0,1},\ldots,q_{0,n}),\ldots,(q_{|v|,1},\ldots,q_{|v|,n})$$

• For |v| big enough there is i < j such that

$$(\boldsymbol{q}_{i,1},\ldots,\boldsymbol{q}_{i,n})=(\boldsymbol{q}_{j,1},\ldots,\boldsymbol{q}_{j,n})$$

- Then *i* to *j* is a cycle for all old runs the output for *uvⁱw* for all runs 1,..., *n* remain −∞
- If new runs occur then the number of runs for uv^iw would be at least n + i 1 (contradiction with finite ambiguity)

Let
$$w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \ldots \cdot u_{n-1} \cdot \underline{v_n} \cdot u_n$$

A refinement is $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots \cdot u'_{n-1} \cdot \underline{y_n} \cdot u'_n$

Let
$$w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \ldots \cdot u_{n-1} \cdot \underline{v_n} \cdot u_n$$

A refinement is $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots \cdot u'_{n-1} \cdot \underline{y_n} \cdot u'_n$

if $v_k = x_k \cdot y_k \cdot z_k$, $u'_k = z_k \cdot u_k \cdot x_{k+1}$; where $z_0 = x_{n+1} = \epsilon$. and $y_k \neq \epsilon$ for every k

Let
$$w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \ldots \cdot u_{n-1} \cdot \underline{v_n} \cdot u_n$$

A refinement is $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots \cdot u'_{n-1} \cdot \underline{y_n} \cdot u'_n$

if $v_k = x_k \cdot y_k \cdot z_k$, $u'_k = z_k \cdot u_k \cdot x_{k+1}$; where $z_0 = x_{n+1} = \epsilon$. and $y_k \neq \epsilon$ for every k

• Let $S \subseteq \{1, \ldots, n\}$

Then $\underline{y_k}(S, i)$ is y_k^i if $k \in S$ and y_k otherwise

Let
$$w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \ldots \cdot u_{n-1} \cdot \underline{v_n} \cdot u_n$$

A refinement is $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots \cdot u'_{n-1} \cdot \underline{y_n} \cdot u'_n$

if $v_k = x_k \cdot y_k \cdot z_k$, $u'_k = z_k \cdot u_k \cdot x_{k+1}$; where $z_0 = x_{n+1} = \epsilon$. and $y_k \neq \epsilon$ for every k

• Let $S \subseteq \{1, \ldots, n\}$ Then $\underline{y_k}(S, i)$ is y_k^i if $k \in S$ and y_k otherwise

By w(S, i) we denote the word

$$w = u'_0 \cdot \underline{y_1}(S, i) \cdot u'_1 \cdot \underline{y_2}(S, i) \cdot \ldots \cdot u'_{n-1} \cdot \underline{y_n}(S, i) \cdot u'_n.$$

Let
$$w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \ldots \cdot u_{n-1} \cdot \underline{v_n} \cdot u_n$$

A refinement is $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots \cdot u'_{n-1} \cdot \underline{y_n} \cdot u'_n$

if $v_k = x_k \cdot y_k \cdot z_k$, $u'_k = z_k \cdot u_k \cdot x_{k+1}$; where $z_0 = x_{n+1} = \epsilon$. and $y_k \neq \epsilon$ for every k

• Let $S \subseteq \{1, \ldots, n\}$ Then $\underline{y_k}(S, i)$ is y_k^i if $k \in S$ and y_k otherwise

By w(S, i) we denote the word $w = u'_0 \cdot \underline{y_1}(S, i) \cdot u'_1 \cdot \underline{y_2}(S, i) \cdot \ldots u'_{n-1} \cdot \underline{y_n}(S, i) \cdot u'_n.$ • Let $f : \Sigma^* \to \mathbb{N} \cup \{-\infty\}$. A refinement is linear if for all S there exists K s.t. f(w(S, i + i)) = K + f(w(S, i)) for all i big enough For linear refinements we denote $\Delta(S) = K$

Let
$$w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \ldots \cdot u_{n-1} \cdot \underline{v_n} \cdot u_n$$

A refinement is $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots \cdot u'_{n-1} \cdot \underline{y_n} \cdot u'_n$

if $v_k = x_k \cdot y_k \cdot z_k$, $u'_k = z_k \cdot u_k \cdot x_{k+1}$; where $z_0 = x_{n+1} = \epsilon$. and $y_k \neq \epsilon$ for every k

• Let $S \subseteq \{1, \ldots, n\}$ Then $\underline{y_k}(S, i)$ is y_k^i if $k \in S$ and y_k otherwise

By w(S, i) we denote the word $w = u'_0 \cdot \underline{y_1}(S, i) \cdot u'_1 \cdot \underline{y_2}(S, i) \cdot \ldots u'_{n-1} \cdot \underline{y_n}(S, i) \cdot u'_n.$ • Let $f : \Sigma^* \to \mathbb{N} \cup \{-\infty\}$. A refinement is linear if for all S there exists K s.t. f(w(S, i + i)) = K + f(w(S, i)) for all i big enough For linear refinements we denote $\Delta(S) = K$ S is decomposable if $\Delta(S) = \sum_{i \in S} \Delta(\{j\})$

Theorem

Let f definable by finitely ambiguous automaton over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$. There exists $N \in \mathbb{N}$ such that for every $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \ldots \underline{v_n} \cdot u_n$, where $n \ge N$ and and $|v_i| \ge N$ for all i, there exists a linear refinement $w = x_0 \cdot \underline{y_1} \cdot x_1 \cdot \underline{y_2} \cdot \ldots \underline{y_n} \cdot x_n$ such that for every sequence of pairwise different, non-empty sets $S_1, S_2, \ldots S_k \subseteq \{1, \ldots, n\}$ with $k \ge N$, one of the following holds: (1) exists j s.t. S_j is not decomposable (2) exist j_1 and j_2 s.t. $\{l_1, l_2\}$ is decomposable for every $l_1 \in S_{j_1}$ and $l_2 \in S_{j_2}$.

Theorem

Let f definable by finitely ambiguous automaton over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$. There exists $N \in \mathbb{N}$ such that for every $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \ldots \underline{v_n} \cdot u_n$, where $n \ge N$ and and $|v_i| \ge N$ for all i, there exists a linear refinement $w = x_0 \cdot \underline{y_1} \cdot x_1 \cdot \underline{y_2} \cdot \ldots \underline{y_n} \cdot x_n$ such that for every sequence of pairwise different, non-empty sets $S_1, S_2, \ldots S_k \subseteq \{1, \ldots, n\}$ with $k \ge N$, one of the following holds: (1) exists j s.t. S_j is not decomposable (2) exist j_1 and j_2 s.t. $\{l_1, l_2\}$ is decomposable for every $l_1 \in S_{j_1}$ and $l_2 \in S_{j_2}$.

• Example : f longest block of b's. Let N from the lemma

Theorem

Let f definable by finitely ambiguous automaton over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$. There exists $N \in \mathbb{N}$ such that for every $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \ldots \underline{v_n} \cdot u_n$, where $n \ge N$ and and $|v_i| \ge N$ for all i, there exists a linear refinement $w = x_0 \cdot \underline{y_1} \cdot x_1 \cdot \underline{y_2} \cdot \ldots \underline{y_n} \cdot x_n$ such that for every sequence of pairwise different, non-empty sets $S_1, S_2, \ldots, S_k \subseteq \{1, \ldots, n\}$ with $k \ge N$, one of the following holds: (1) exists j s.t. S_j is not decomposable (2) exist j_1 and j_2 s.t. $\{l_1, l_2\}$ is decomposable for every $l_1 \in S_{j_1}$ and $l_2 \in S_{j_2}$.

• Example : f longest block of b's. Let N from the lemma Let $(\underline{b}^{N+1}a)^{N+1}$ and define $S_j = \{j\}$

Theorem

Let f definable by finitely ambiguous automaton over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$. There exists $N \in \mathbb{N}$ such that for every $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \ldots \underline{v_n} \cdot u_n$, where $n \ge N$ and and $|v_i| \ge N$ for all i, there exists a linear refinement $w = x_0 \cdot \underline{y_1} \cdot x_1 \cdot \underline{y_2} \cdot \ldots \underline{y_n} \cdot x_n$ such that for every sequence of pairwise different, non-empty sets $S_1, S_2, \ldots S_k \subseteq \{1, \ldots, n\}$ with $k \ge N$, one of the following holds: (1) exists j s.t. S_j is not decomposable (2) exist j_1 and j_2 s.t. $\{l_1, l_2\}$ is decomposable for every $l_1 \in S_{j_1}$ and $l_2 \in S_{j_2}$.

Example : f longest block of b's. Let N from the lemma
 Let (<u>b^{N+1}</u>a)^{N+1} and define S_j = {j}
 Every S_j is decomposable but any {j₁, j₂} is not decomposable

Corollary

Finitely ambiguous WA \subsetneq poly-ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Corollary

Finitely ambiguous WA \subsetneq poly-ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, \mathbf{0})$

• Proof.

Suppose f is recognised by A which is m-ambiguous, |Q| = r and $f(w) > -\infty$

Corollary

Finitely ambiguous WA \subsetneq poly-ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, \mathbf{0})$

• Proof.

Suppose f is recognised by $\mathcal A$ which is m-ambiguous, |Q| = r and $f(w) > -\infty$

• Set $N = \max\{r^m, m\} + 1$.

The refinement is defined in such a way that every y_i is a cycle on all accepting runs

Corollary

Finitely ambiguous WA \subsetneq poly-ambiguous WA over $(\mathbb{N}_{-\infty},\mathsf{max},+,-\infty,\mathbf{0})$

• Proof.

Suppose f is recognised by $\mathcal A$ which is m-ambiguous, |Q| = r and $f(w) > -\infty$

• Set
$$N = \max\{r^m, m\} + 1$$
.

The refinement is defined in such a way that every y_i is a cycle on all accepting runs

 Such a refinement is linear and Δ(S) is determined by maximal cycle weights in blocks in S

Corollary

Finitely ambiguous WA \subsetneq poly-ambiguous WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, \mathbf{0})$

• Proof.

Suppose f is recognised by $\mathcal A$ which is m-ambiguous, |Q| = r and $f(w) > -\infty$

• Set
$$N = \max\{r^m, m\} + 1$$
.

The refinement is defined in such a way that every y_i is a cycle on all accepting runs

- Such a refinement is linear and $\Delta(S)$ is determined by maximal cycle weights in blocks in S
- We will assume there are only accepting runs (to simplify technicalities)

Denote runs by ρ_1, \ldots, ρ_m

• Notice that by pumping y_i the number of runs cannot increase (otherwise a contradiction with finitely ambiguous)

- Notice that by pumping y_i the number of runs cannot increase (otherwise a contradiction with finitely ambiguous)
- So for all S_j the number of runs in w(S_j, i) is m and they come from ρ₁,..., ρ_m

- Notice that by pumping y_i the number of runs cannot increase (otherwise a contradiction with finitely ambiguous)
- So for all S_j the number of runs in w(S_j, i) is m and they come from ρ₁,..., ρ_m
- For every j ∈ {1,..., n} and l ∈ {1,..., m} let ρ_l[j] be the corresponding cycle Let wt(ρ_l[j]) be its weight

- Notice that by pumping y_i the number of runs cannot increase (otherwise a contradiction with finitely ambiguous)
- So for all S_j the number of runs in w(S_j, i) is m and they come from ρ₁,..., ρ_m
- For every j ∈ {1,..., n} and l ∈ {1,..., m} let ρ_l[j] be the corresponding cycle Let wt(ρ_l[j]) be its weight
- A cycle $\rho_l[j]$ is dominant if $wt(\rho_l[j]) \ge wt(\rho_{l'}[j])$ for all $l' \in \{1, \dots, m\}$

- Notice that by pumping y_i the number of runs cannot increase (otherwise a contradiction with finitely ambiguous)
- So for all S_j the number of runs in w(S_j, i) is m and they come from ρ₁,..., ρ_m
- For every j ∈ {1,..., n} and l ∈ {1,..., m} let ρ_l[j] be the corresponding cycle Let wt(ρ_l[j]) be its weight
- A cycle $\rho_I[j]$ is dominant if $wt(\rho_I[j]) \ge wt(\rho_{I'}[j])$ for all $I' \in \{1, \dots, m\}$
- If a cycle $\rho_l[j]$ is dominant then $\Delta(\{j\}) = wt(\rho_{l'}[j])$

Lemma

Let $S \subseteq \{1, ..., n\}$ a linear refinement. Then S is decomposable iff for one of the runs ρ the cycle $\rho[j]$ is dominant for all $j \in S$.

Lemma

Let $S \subseteq \{1, ..., n\}$ a linear refinement. Then S is decomposable iff for one of the runs ρ the cycle $\rho[j]$ is dominant for all $j \in S$.

Proof. (\implies)

Let ρ be such that $\sum_{j \in S} wt(\rho[j])$ is maximal

Lemma

Let $S \subseteq \{1, ..., n\}$ a linear refinement. Then S is decomposable iff for one of the runs ρ the cycle $\rho[j]$ is dominant for all $j \in S$.

Proof. (\Longrightarrow) Let ρ be such that $\sum_{j \in S} wt(\rho[j])$ is maximal

• We claim that ρ satisfies the lemma By definition $\Delta(S) = \sum_{j \in S} wt(\rho[j])$

Lemma

Let $S \subseteq \{1, ..., n\}$ a linear refinement. Then S is decomposable iff for one of the runs ρ the cycle $\rho[j]$ is dominant for all $j \in S$.

Proof. (\Longrightarrow) Let ρ be such that $\sum_{j \in S} wt(\rho[j])$ is maximal

- We claim that ρ satisfies the lemma By definition $\Delta(S) = \sum_{j \in S} wt(\rho[j])$
- For a contradiction let j^* s.t. $wt(\rho[j^*]) < \Delta(\{j^*\})$ Then $\Delta(S) = \sum_{j \in S} wt(\rho[j]) < \sum_{j \in S} \Delta(\{j\})$

Lemma

Let $S \subseteq \{1, ..., n\}$ a linear refinement. Then S is decomposable iff for one of the runs ρ the cycle $\rho[j]$ is dominant for all $j \in S$.

Proof. (\Longrightarrow) Let ρ be such that $\sum_{j \in S} wt(\rho[j])$ is maximal

- We claim that ρ satisfies the lemma By definition $\Delta(S) = \sum_{j \in S} wt(\rho[j])$
- For a contradiction let j^* s.t. $wt(\rho[j^*]) < \Delta(\{j^*\})$ Then $\Delta(S) = \sum_{j \in S} wt(\rho[j]) < \sum_{j \in S} \Delta(\{j\})$
- A contradiction with S being linear

(\leftarrow) Let ρ be s.t. $\rho[j]$ is dominant for all $j \in S$

(\Leftarrow) Let ρ be s.t. $\rho[j]$ is dominant for all $j \in S$

• Then $\sum_{j \in S} wt(\rho[j]) \ge \sum_{j \in S} wt(\rho'[j])$ for any other run ρ'

(\Leftarrow) Let ρ be s.t. $\rho[j]$ is dominant for all $j \in S$

- Then $\sum_{j \in S} wt(\rho[j]) \ge \sum_{j \in S} wt(\rho'[j])$ for any other run ρ'
- So when pumping w(S, i) the value increases by Σ_{j∈S} wt(ρ[j])
 Which is equal to Σ_{j∈S} Δ({j}) since cycles are dominant

(\Leftarrow) Let ρ be s.t. $\rho[j]$ is dominant for all $j \in S$

- Then $\sum_{j \in S} wt(\rho[j]) \ge \sum_{j \in S} wt(\rho'[j])$ for any other run ρ'
- So when pumping w(S, i) the value increases by Σ_{j∈S} wt(ρ[j])
 Which is equal to Σ_{j∈S} Δ({j}) since cycles are dominant

To prove the theorem suppose all S_j are decomposable
 By lemma for all S_j there is ρ_{l_i} in which all cycles are dominant

(\Leftarrow) Let ρ be s.t. $\rho[j]$ is dominant for all $j \in S$

- Then $\sum_{j \in S} wt(\rho[j]) \ge \sum_{j \in S} wt(\rho'[j])$ for any other run ρ'
- So when pumping w(S, i) the value increases by Σ_{j∈S} wt(ρ[j])
 Which is equal to Σ_{j∈S} Δ({j}) since cycles are dominant

- To prove the theorem suppose all S_j are decomposable
 By lemma for all S_j there is ρ_{lj} in which all cycles are dominant
- By choice of N there are more sets than runs so $I_{j_1} = I_{j_2}$ for some $j_1 \neq j_2$

(\Leftarrow) Let ρ be s.t. $\rho[j]$ is dominant for all $j \in S$

- Then $\sum_{j \in S} wt(\rho[j]) \ge \sum_{j \in S} wt(\rho'[j])$ for any other run ρ'
- So when pumping w(S, i) the value increases by $\sum_{j \in S} wt(\rho[j])$ Which is equal to $\sum_{j \in S} \Delta(\{j\})$ since cycles are dominant

- To prove the theorem suppose all S_j are decomposable
 By lemma for all S_j there is ρ_{lj} in which all cycles are dominant
- By choice of N there are more sets than runs so $I_{j_1} = I_{j_2}$ for some $j_1 \neq j_2$
- By lemma $\{k_1, k_2\}$ is decomposable for every $k_1 \in S_{j_1}$ and $k_2 \in S_{j_2}$

Let S_1, \ldots, S_m over $\{1, \ldots, n\}$ a partition (S_i nonempty, pairwise disjoint) We say that $S \subseteq \{1, \ldots, n\}$ is a selection set if $|S \cap S_i| = 1$ for every *i*.

Let S_1, \ldots, S_m over $\{1, \ldots, n\}$ a partition (S_i nonempty, pairwise disjoint) We say that $S \subseteq \{1, \ldots, n\}$ is a selection set if $|S \cap S_i| = 1$ for every *i*.

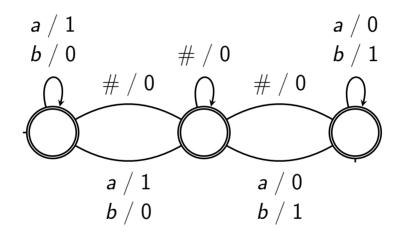
Theorem

Let f poly-ambiguous over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$. There exist N and a function $\varphi : \mathbb{N} \to \mathbb{N}$ such that for all $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \ldots \cdot u_{n-1} \cdot \underline{v_n} \cdot u_n$, where $|v_i| \ge N$ for every $1 \le i \le n$, there exists a linear refinement

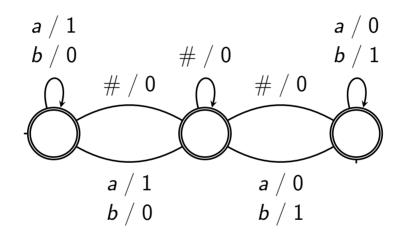
$$w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdots u'_{n-1} \cdot \underline{y_n} \cdot u'_n,$$

such that for every partition $\pi = S_1, S_2, \dots S_m$ of $\{1, \dots, n\}$ with $m \ge \varphi(\max_j(|S_j|))$ one of the following holds: (1) there exists j such that S_j is decomposable; (2) there exists a selection set S for π such that S is not decomposable.

Example $w_0 \# w_1 \# \dots \# w_n$ with $w_i \in \{a, b\}^*$ $f(w) = \sum_{i=0}^n \max\{|w_i|_a, |w_i|_b\}$

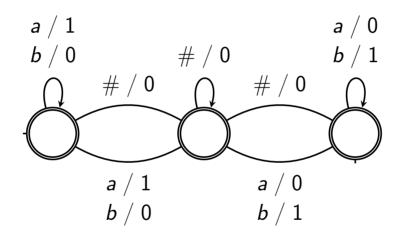


Example $w_0 \# w_1 \# \dots \# w_n$ with $w_i \in \{a, b\}^*$ $f(w) = \sum_{i=0}^n \max\{|w_i|_a, |w_i|_b\}$



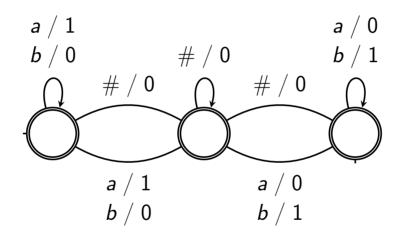
Fix N and φ from the theorem. Let m ≥ φ(2) consider refinements of (<u>a^N b^N</u>#)^m

Example $w_0 \# w_1 \# \dots \# w_n$ with $w_i \in \{a, b\}^*$ $f(w) = \sum_{i=0}^n \max\{|w_i|_a, |w_i|_b\}$



Fix N and φ from the theorem. Let m ≥ φ(2) consider refinements of (<u>a^N b^N</u>#)^m denote by j, j' ∈ {1,...,m} blocks of a and b S_j = {j, j'} (not decomposable)

Example $w_0 \# w_1 \# \dots \# w_n$ with $w_i \in \{a, b\}^*$ $f(w) = \sum_{i=0}^n \max\{|w_i|_a, |w_i|_b\}$



Fix N and φ from the theorem. Let m ≥ φ(2) consider refinements of (<u>a^N b^N</u>#)^m denote by j, j' ∈ {1,..., m} blocks of a and b S_j = {j, j'} (not decomposable) But every selection set is decomposable

Corollary

Poly-ambiguous WA \subsetneq WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$

Corollary

Poly-ambiguous WA \subsetneq WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, \mathbf{0})$

Decision problems for weighted automata

Is a given automaton A finitely ambiguous, polynomially ambiguous?
 in NLOGSPACE (tutorials)

Corollary

Poly-ambiguous WA \subsetneq WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, \mathbf{0})$

Decision problems for weighted automata

- Is a given automaton A finitely ambiguous, polynomially ambiguous?
 in NLOGSPACE (tutorials)
- Given an automaton A is there an equivalent deterministic automaton B?
 Long-standing open problem for (N_{+∞}, min, +, ∞, 0) and (N_{-∞}, max, +, -∞, 0)

Corollary

Poly-ambiguous WA \subsetneq WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, \mathbf{0})$

Decision problems for weighted automata

- Is a given automaton A finitely ambiguous, polynomially ambiguous?
 in NLOGSPACE (tutorials)
- Given an automaton A is there an equivalent deterministic automaton B?
 Long-standing open problem for (N_{+∞}, min, +, ∞, 0) and (N_{-∞}, max, +, -∞, 0)
 (less popular) open problem for (Q, +, ·, 0, 1)

Corollary

Poly-ambiguous WA \subsetneq WA over $(\mathbb{N}_{-\infty}, \max, +, -\infty, \mathbf{0})$

Decision problems for weighted automata

- Is a given automaton A finitely ambiguous, polynomially ambiguous?
 in NLOGSPACE (tutorials)
- Given an automaton A is there an equivalent deterministic automaton B?
 Long-standing open problem for (N_{+∞}, min, +, ∞, 0) and (N_{-∞}, max, +, -∞, 0)
 (less popular) open problem for (Q, +, ·, 0, 1)
- Partial results: decidable for $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$ and $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$ If we assume that \mathcal{A} is unambiguous, finitely ambiguous or poly-ambiguous

Variants of the classical emptiness problems for finite automata

Variants of the classical emptiness problems for finite automata

• Emptiness: Given \mathcal{A} is there a word w such that:

 $\llbracket \mathcal{A} \rrbracket (w) = c, \quad \text{or } \llbracket \mathcal{A} \rrbracket (w) \ge c, \quad \text{or } \llbracket \mathcal{A} \rrbracket (w) \le c$

Variants of the classical emptiness problems for finite automata

• Emptiness: Given \mathcal{A} is there a word w such that:

 $\llbracket \mathcal{A} \rrbracket (w) = c, \quad \text{ or } \llbracket \mathcal{A} \rrbracket (w) \ge c, \quad \text{ or } \llbracket \mathcal{A} \rrbracket (w) \leqslant c$

Usually undecidable or trivially decidable

Variants of the classical emptiness problems for finite automata

• Emptiness: Given \mathcal{A} is there a word w such that:

 $\llbracket \mathcal{A} \rrbracket (w) = c, \quad \text{ or } \llbracket \mathcal{A} \rrbracket (w) \ge c, \quad \text{ or } \llbracket \mathcal{A} \rrbracket (w) \leqslant c$

Usually undecidable or trivially decidable

 $\llbracket \mathcal{A} \rrbracket (w) = 0$ undecidable for $(\mathbb{Q}, +, \cdot, 0, 1)$ (next slide)

Variants of the classical emptiness problems for finite automata

• Emptiness: Given A is there a word w such that:

 $\llbracket \mathcal{A} \rrbracket (w) = c, \quad \text{ or } \llbracket \mathcal{A} \rrbracket (w) \ge c, \quad \text{ or } \llbracket \mathcal{A} \rrbracket (w) \leqslant c$

Usually undecidable or trivially decidable

 $\llbracket \mathcal{A} \rrbracket (w) = 0$ undecidable for $(\mathbb{Q}, +, \cdot, 0, 1)$ (next slide) But assuming 1-letter alphabet this is equivalent to the problem: Given a linear recursive sequence u_0, u_1, \ldots is there $n \in \mathbb{N}$ s.t. $u_n = 0$

Variants of the classical emptiness problems for finite automata

• Emptiness: Given A is there a word w such that:

 $\llbracket \mathcal{A} \rrbracket (w) = c, \quad \text{ or } \llbracket \mathcal{A} \rrbracket (w) \geqslant c, \quad \text{ or } \llbracket \mathcal{A} \rrbracket (w) \leqslant c$

Usually undecidable or trivially decidable

 $\llbracket \mathcal{A} \rrbracket (w) = 0$ undecidable for $(\mathbb{Q}, +, \cdot, 0, 1)$ (next slide) But assuming 1-letter alphabet this is equivalent to the problem: Given a linear recursive sequence u_0, u_1, \ldots is there $n \in \mathbb{N}$ s.t. $u_n = 0$

This is known as the Skolem problem (open for many years) Next two weeks there will be a result related to this problem

Fix the semiring $(\mathbb{Q}, +, \cdot, 0, 1)$. The problem if given \mathcal{A} is there a word w such that $\llbracket \mathcal{A} \rrbracket (w) = 0$ is undecidable.

Fix the semiring $(\mathbb{Q}, +, \cdot, 0, 1)$. The problem if given \mathcal{A} is there a word w such that $\llbracket \mathcal{A} \rrbracket (w) = 0$ is undecidable.

Proof.

We reduce from the Post correspondence problem Given two morphisms $\varphi_1, \varphi_2 : \Sigma^* \to \{0, 1\}^*$ is there a word ws.t. $\varphi_1(w) = \varphi_2(w)$

Fix the semiring $(\mathbb{Q}, +, \cdot, 0, 1)$. The problem if given \mathcal{A} is there a word w such that $\llbracket \mathcal{A} \rrbracket (w) = 0$ is undecidable.

Proof.

We reduce from the Post correspondence problem Given two morphisms $\varphi_1, \varphi_2 : \Sigma^* \to \{0, 1\}^*$ is there a word ws.t. $\varphi_1(w) = \varphi_2(w)$

For example $arphi_1(a)=$ 0, $arphi_1(b)=$ 10011, $arphi_2(a)=$ 001, $arphi_2(b)=$ 1

Fix the semiring $(\mathbb{Q}, +, \cdot, 0, 1)$. The problem if given \mathcal{A} is there a word w such that $\llbracket \mathcal{A} \rrbracket (w) = 0$ is undecidable.

Proof.

We reduce from the Post correspondence problem Given two morphisms $\varphi_1, \varphi_2 : \Sigma^* \to \{0, 1\}^*$ is there a word ws.t. $\varphi_1(w) = \varphi_2(w)$

For example $\varphi_1(a) = 0$, $\varphi_1(b) = 10011$, $\varphi_2(a) = 001$, $\varphi_2(b) = 1$ Then $\varphi_1(aab) = \varphi_2(aab) = 0010011$

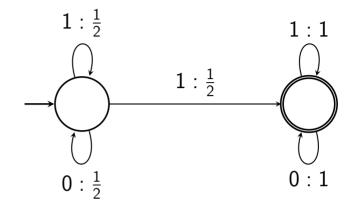
Fix the semiring $(\mathbb{Q}, +, \cdot, 0, 1)$. The problem if given \mathcal{A} is there a word w such that $\llbracket \mathcal{A} \rrbracket (w) = 0$ is undecidable.

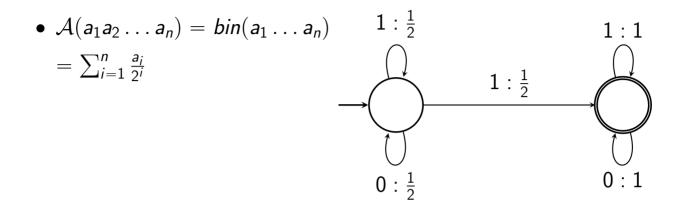
Proof.

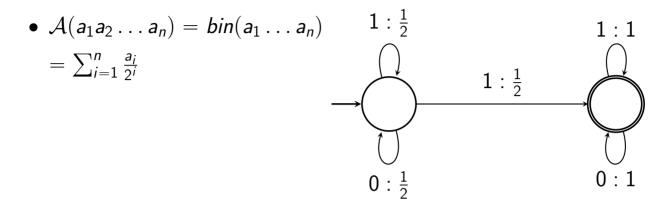
We reduce from the Post correspondence problem Given two morphisms $\varphi_1, \varphi_2 : \Sigma^* \to \{0, 1\}^*$ is there a word ws.t. $\varphi_1(w) = \varphi_2(w)$

For example $\varphi_1(a) = 0$, $\varphi_1(b) = 10011$, $\varphi_2(a) = 001$, $\varphi_2(b) = 1$ Then $\varphi_1(aab) = \varphi_2(aab) = 0010011$

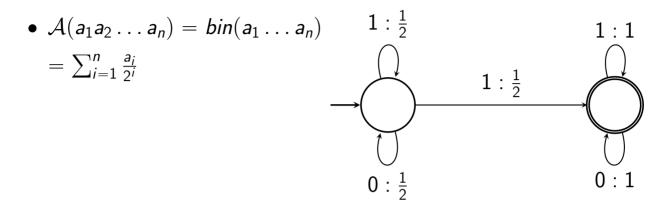
• One can assume that if such a w exists then the last letter of w is 1



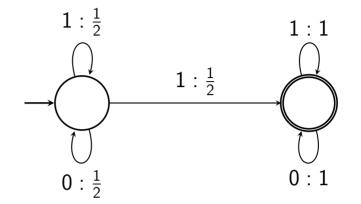


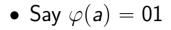


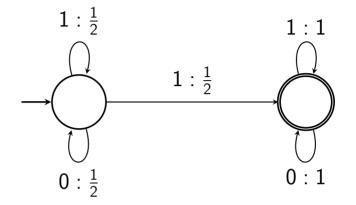
Notice that (almost) every w has a unique value [[A]] (w) (assuming w ends with 1)

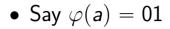


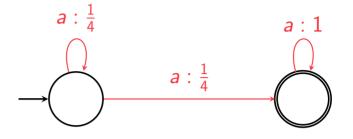
- Notice that (almost) every w has a unique value [[A]] (w) (assuming w ends with 1)
- Given a morphism $\varphi : \Sigma^* \to \{0, 1\}^*$ we define \mathcal{A}_{φ} s.t. $\llbracket \mathcal{A}_{\varphi} \rrbracket (w) = bin(\varphi(w))$

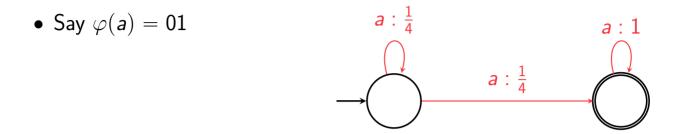




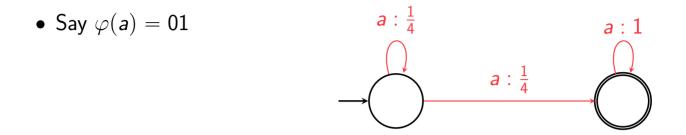








• Define \mathcal{A}_{φ_1} and \mathcal{A}_{φ_2}



- Define \mathcal{A}_{arphi_1} and \mathcal{A}_{arphi_2}
- Then A defined as A_{\varphi1} A_{\varphi2} has the property that
 A(w) = 0 iff the Post correspondence instance is valid