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‚ We focus on pN´8,max,`,´8, 0q

unambiguous, finitely ambiguous and polynomially ambiguous

Hierarchy of classes for weighted automata

Weighted automata (WA)

Polynomially ambiguous WA

Finitely ambiguous WA

Unambiguous WA

Deterministic WA

Ď
Ď

Ď
Ď

‚ The inclusions are strict

for pN`8,min,`,8, 0q

and pN´8,max,`,´8, 0q

‚ Not over 1-letter alphabet

(last lecture)
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Pumping lemmas

How to prove L “ tanbn | n P Nu is not regular?

‚ Pumping argument: let w P L and |w | big enough

Then w “ xyz such that xy iz P L for some y ‰ ε and all i P N

‚ By a case analysis y P a˚, y P a˚b˚ or y P b˚ contradiction

‚ Pumping lemmas for weighted automata?

‚ Fix u ¨ v ¨ w P Σ˚

We say that û ¨ v̂ ¨ ŵ P Σ˚, is a refinement of u ¨ v ¨ w if

1. u ¨ v ¨ w “ û ¨ v̂ ¨ ŵ

2. there exist u1,w 1 such that u ¨ u1 “ û, w 1 ¨ w “ ŵ , u1 ¨ v̂ ¨ w 1 “ v , and v̂ ‰ ε.

Example: aab ¨ bb ¨ ba refines aa ¨ bbbb ¨ a
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Example: aab ¨ bb ¨ ba refines aa ¨ bbbb ¨ a

Filip Mazowiecki Automata and sequences 2 / 18



Pumping lemmas

How to prove L “ tanbn | n P Nu is not regular?

‚ Pumping argument: let w P L and |w | big enough

Then w “ xyz such that xy iz P L for some y ‰ ε and all i P N

‚ By a case analysis y P a˚, y P a˚b˚ or y P b˚ contradiction

‚ Pumping lemmas for weighted automata?

‚ Fix u ¨ v ¨ w P Σ˚
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Unambiguous automata (1)

Fix the semiring pN´8,max,`,´8, 0q

Theorem (M. and Riveros 2018)

Let f : Σ˚ Ñ N Y t´8u be definable by unambiguous WA over

pN´8,max,`,´8, 0q. There exists N such that for all words of the form

u ¨ v ¨ w P Σ˚ with |v | ě N , v ‰ ε, there exists a refinement û ¨ v̂ ¨ ŵ of

u ¨ v ¨ w such that one of the conditions holds:

(1) f pû ¨ v̂ i ¨ ŵq “ f pû ¨ v̂ i`1 ¨ ŵq for every i ě N .

(2) f pû ¨ v̂ i ¨ ŵq ă f pû ¨ v̂ i`1 ¨ ŵq for every i ě N .

‚ Example: f pwq “ maxp#apwq,#bpwqq, fix N from the lemma

f papN`1q
2
¨ bN ¨ εq “ pN ` 1q2, refining apN`1q

2
¨ bN we get apN`1q

2
bn ¨ bm ¨ bl

‚ Since n `mN ` l ă pN ` 1q2 then (1). But for i big enough (2)
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(2) f pû ¨ v̂ i ¨ ŵq ă f pû ¨ v̂ i`1 ¨ ŵq for every i ě N .

‚ Example: f pwq “ maxp#apwq,#bpwqq, fix N from the lemma

f papN`1q
2
¨ bN ¨ εq “ pN ` 1q2, refining apN`1q

2
¨ bN we get apN`1q

2
bn ¨ bm ¨ bl

‚ Since n `mN ` l ă pN ` 1q2 then (1). But for i big enough (2)

Filip Mazowiecki Automata and sequences 3 / 18



Unambiguous automata (2)

Corollary

Unambiguous WA Ĺ finitely ambiguous WA over pN´8,max,`,´8, 0q

Proof.

Let A unambiguous automaton defining f . And let uvw with v ě N ąą 2|Q|

‚ if f puvwq ą ´8 then there is a unique accepting run on uvw

Let q0, . . . , q|v | be the set of states on v

There is a cycle ρ “ qi , . . . , qj for i ă j

If the value on ρ is 0 then (1) otherwise (2)

‚ if f puvwq “ ´8 then since there is at most n “ expp|Q|q runs on uvw

(A is unambiguous)
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Unambiguous automata (3)

We can present all runs on v as sequences

pq0,1, . . . , q0,nq, . . . , pq|v |,1, . . . , q|v |,nq

‚ For |v | big enough there is i ă j such that

pqi ,1, . . . , qi ,nq “ pqj ,1, . . . , qj ,nq

‚ Then i to j is a cycle for all old runs

the output for uv iw for all runs 1, . . . , n remain ´8

‚ If new runs occur then the number of runs for uv iw would be at least n ` i ´ 1

(contradiction with finite ambiguity)

�
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Finitely ambiguous automata (1)

Let w “ u0 ¨ v1 ¨ u1 ¨ v2 ¨ . . . un´1 ¨ vn ¨ un

A refinement is w “ u10 ¨ y1 ¨ u
1
1 ¨ y2 ¨ . . . u

1
n´1 ¨ yn ¨ u

1
n

if vk “ xk ¨ yk ¨ zk , u1k “ zk ¨ uk ¨ xk`1; where z0 “ xn`1 “ ε.

and yk ‰ ε for every k

‚ Let S Ď t1, . . . , nu

Then ykpS , iq is y ik if k P S and yk otherwise

By wpS , iq we denote the word

w “ u10 ¨ y1pS , iq ¨ u
1
1 ¨ y2pS , iq ¨ . . . u

1
n´1 ¨ ynpS , iq ¨ u

1
n.

‚ Let f : Σ˚ Ñ NY t´8u. A refinement is linear if for all S there exists K s.t.

f pwpS , i ` iqq “ K ` f pwpS , iqq for all i big enough

For linear refinements we denote ∆pSq “ K

S is decomposable if ∆pSq “
ř

jPS ∆ptjuq
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1
n
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Finitely ambiguous automata (2)

Theorem

Let f definable by finitely ambiguous automaton over pN´8,max,`,´8, 0q.

There exists N P N such that for every w “ u0 ¨ v1 ¨ u1 ¨ v2 ¨ . . . vn ¨ un, where

n ě N and and |vi | ě N for all i , there exists a linear refinement

w “ x0 ¨ y1 ¨ x1 ¨ y2 ¨ . . . yn ¨ xn

such that for every sequence of pairwise different, non-empty sets

S1, S2, . . . Sk Ď t1, . . . , nu with k ě N , one of the following holds:

(1) exists j s.t. Sj is not decomposable

(2) exist j1 and j2 s.t. tl1, l2u is decomposable for every l1 P Sj1 and l2 P Sj2.

‚ Example : f longest block of b’s. Let N from the lemma

Let pbN`1aqN`1 and define Sj “ tju

Every Sj is decomposable but any tj1, j2u is not decomposable
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Finitely ambiguous automata (3)

Corollary

Finitely ambiguous WA Ĺ poly-ambiguous WA over pN´8,max,`,´8, 0q

‚ Proof.

Suppose f is recognised by A which is m-ambiguous, |Q| “ r and f pwq ą ´8

‚ Set N “ maxtrm,mu ` 1.

The refinement is defined in such a way that every yi is a cycle

on all accepting runs

‚ Such a refinement is linear

and ∆pSq is determined by maximal cycle weights in blocks in S

‚ We will assume there are only accepting runs (to simplify technicalities)
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Finitely ambiguous automata (4)

Denote runs by ρ1, . . . , ρm

‚ Notice that by pumping yi the number of runs cannot increase

(otherwise a contradiction with finitely ambiguous)

‚ So for all Sj the number of runs in wpSj , iq is m

and they come from ρ1, . . . , ρm

‚ For every j P t1, . . . , nu and l P t1, . . . ,mu let ρlrjs be the corresponding cycle

Let wtpρlrjsq be its weight

‚ A cycle ρlrjs is dominant if wtpρlrjsq ě wtpρl 1rjsq for all l 1 P t1, . . . ,mu

‚ If a cycle ρlrjs is dominant then ∆ptjuq “ wtpρl 1rjsq
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Finitely ambiguous automata (5)

Lemma

Let S Ď t1, . . . , nu a linear refinement. Then S is decomposable iff for one of

the runs ρ the cycle ρrjs is dominant for all j P S .

Proof. ( ùñ )

Let ρ be such that
ř

jPS wtpρrjsq is maximal

‚ We claim that ρ satisfies the lemma

By definition ∆pSq “
ř

jPS wtpρrjsq

‚ For a contradiction let j ˚ s.t. wtpρrj ˚sq ă ∆ptj ˚uq

Then ∆pSq “
ř

jPS wtpρrjsq ă
ř

jPS ∆ptjuq

‚ A contradiction with S being linear
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Finitely ambiguous automata (6)

(ðù) Let ρ be s.t. ρrjs is dominant for all j P S

‚ Then
ř

jPS wtpρrjsq ě
ř

jPS wtpρ
1rjsq for any other run ρ1

‚ So when pumping wpS , iq the value increases by
ř

jPS wtpρrjsq

Which is equal to
ř

jPS ∆ptjuq since cycles are dominant

�

‚ To prove the theorem suppose all Sj are decomposable

By lemma for all Sj there is ρlj in which all cycles are dominant

‚ By choice of N there are more sets than runs so lj1 “ lj2 for some j1 ‰ j2

‚ By lemma tk1, k2u is decomposable for every k1 P Sj1 and k2 P Sj2

�
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Polynomially ambiguous automata (1)

Let S1, . . . , Sm over t1, . . . , nu a partition (Si nonempty, pairwise disjoint)

We say that S Ď t1, . . . , nu is a selection set if |S X Si | “ 1 for every i .

Theorem

Let f poly-ambiguous over pN´8,max,`,´8, 0q. There exist N and a func-

tion ϕ : N Ñ N such that for all w “ u0 ¨ v1 ¨ u1 ¨ v2 ¨ . . . un´1 ¨ vn ¨ un, where

|vi | ě N for every 1 ď i ď n, there exists a linear refinement

w “ u10 ¨ y1 ¨ u
1
1 ¨ y2 ¨ ¨ ¨ u

1
n´1 ¨ yn ¨ u

1
n,

such that for every partition π “ S1, S2, . . . Sm of t1, . . . , nu with m ě

ϕpmaxjp|Sj |qq one of the following holds:

(1) there exists j such that Sj is decomposable;

(2) there exists a selection set S for π such that S is not decomposable.
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Polynomially ambiguous automata (2)

Example w0#w1# . . .#wn with wi P ta, bu
˚

f pwq “
řn

i“0 maxt|wi |a, |wi |bu

a { 1

b { 0 # { 0

a { 0

b { 1

# { 0 # { 0

a { 0

b { 1

a { 1

b { 0

‚ Fix N and ϕ from the theorem. Let m ě ϕp2q

consider refinements of paN bN#qm

denote by j , j 1 P t1, . . . ,mu blocks of a and b Sj “ tj , j
1u (not decomposable)

But every selection set is decomposable
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Polynomially ambiguous automata (3)

Corollary

Poly-ambiguous WA Ĺ WA over pN´8,max,`,´8, 0q

Decision problems for weighted automata

‚ Is a given automaton A finitely ambiguous, polynomially ambiguous?

in NLOGSPACE (tutorials)

‚ Given an automaton A is there an equivalent deterministic automaton B?

Long-standing open problem for pN`8,min,`,8, 0q and pN´8,max,`,´8, 0q

(less popular) open problem for pQ,`, ¨, 0, 1q

‚ Partial results: decidable for pN`8,min,`,8, 0q and pN´8,max,`,´8, 0q

If we assume that A is unambiguous, finitely ambiguous or poly-ambiguous
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Decision problems for weighted automata (2)

Variants of the classical emptiness problems for finite automata

‚ Emptiness: Given A is there a word w such that:

JAK pwq “ c , or JAK pwq ě c , or JAK pwq ď c

Usually undecidable or trivially decidable

JAK pwq “ 0 undecidable for pQ,`, ¨, 0, 1q (next slide)

But assuming 1-letter alphabet this is equivalent to the problem:

Given a linear recursive sequence u0, u1, . . . is there n P N s.t. un “ 0

This is known as the Skolem problem (open for many years)

Next two weeks there will be a result related to this problem
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Decision problems for weighted automata (3)

Theorem (Bertoni 1974)

Fix the semiring pQ,`, ¨, 0, 1q. The problem if given A is there a word w such

that JAK pwq “ 0 is undecidable.

Proof.

We reduce from the Post correspondence problem

Given two morphisms ϕ1, ϕ2 : Σ˚ Ñ t0, 1u˚ is there a word w

s.t. ϕ1pwq “ ϕ2pwq

For example ϕ1paq “ 0, ϕ1pbq “ 10011, ϕ2paq “ 001, ϕ2pbq “ 1

Then ϕ1paabq “ ϕ2paabq “ 0010011

‚ One can assume that if such a w exists then the last letter of w is 1
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Decision problems for weighted automata (4)

1 : 1
2

0 : 1
2

1 : 1

0 : 1

1 : 1
2

‚ Apa1a2 . . . anq “ binpa1 . . . anq

“
řn

i“1
ai
2i

‚ Notice that (almost) every w has a unique value JAK pwq

(assuming w ends with 1)

‚ Given a morphism ϕ : Σ˚ Ñ t0, 1u˚ we define Aϕ s.t.

JAϕK pwq “ binpϕpwqq
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1 : 1
2

0 : 1
2

1 : 1

0 : 1

1 : 1
2

Decision problems for weighted automata (5)

‚ Say ϕpaq “ 01 a : 1
4 a : 1

a : 1
4

‚ Define Aϕ1 and Aϕ2

‚ Then A defined as Aϕ1 ´Aϕ2 has the property that

Apwq “ 0 iff the Post correspondence instance is valid

�
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