Lecture 5

Ambiguity for the max plus semiring

Powered by BeamerikZ


https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

Hierarchy of classes for weighted automata

e The inclusions are strict
for (N4, min, 4, 00, 0)
and (N_,,, max, +, —c0, 0)
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Hierarchy of classes for weighted automata

e The inclusions are strict Weighted automata (WA)
for (N4, min, 4, 00, 0) Ul
and (N_.,, max, +, —o0,0) Polynomially ambiguous WA
Ul
e Not over 1-letter alphabet Finitely ambiguous WA
(last lecture) Ul
Unambiguous WA
Ul

Deterministic WA
e We focus on (N_,,, max, +, —o0,0)

unambiguous, finitely ambiguous and polynomially ambiguous
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Pumping lemmas

How to prove L = {a"b" | n € N} is not regular?
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Pumping lemmas
How to prove L = {a"b" | n € N} is not regular?
e Pumping argument: let w € L and |w| big enough
Then w = xyz such that xy’z € L for some y # € and all i € N

e By a case analysis y € a*, y € a"b" or y € b* contradiction

e Pumping lemmas for weighted automata?

e Fixu-v-welXl”
We say that 4-v-w e 1", is a refinement of u-v - w if

N

l.u-v-w=0-V-w
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Pumping lemmas

How to prove L = {a"b" | n € N} is not regular?

e Pumping argument: let w € L and |w| big enough

Then w = xyz such that xy’z € L for some y # € and all i € N

e By a case analysis y € a*, y € a"b" or y € b* contradiction

e Pumping lemmas for weighted automata?

o Fixu-v-wel’

We say that 4-v-w e 1", is a refinement of u-v - w if

N

l.u-v-w=0-V-w

N

2. there exist ', w/ suchthatu-v' =i, w -w=w, v -V -w =v, and V # ¢
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Pumping lemmas

How to prove L = {a"b" | n € N} is not regular?

e Pumping argument: let w € L and |w| big enough

Then w = xyz such that xy’z € L for some y # € and all i € N

e By a case analysis y € a*, y € a"b" or y € b* contradiction

e Pumping lemmas for weighted automata?

o Fixu-v-wel’

We say that 4-v-w e 1", is a refinement of u-v - w if

N

l.u-v-w=0-V-w

N

2. there exist ', w/ suchthatu-v' =i, w -w=w, v -V -w =v, and V # ¢

Example: aab - bb - ba refines aa - bbbb - a
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Unambiguous automata (1)

Fix the semiring (N_.,, max, +, —c0, 0)
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Unambiguous automata (1)

Fix the semiring (N_.,, max, +, —c0, 0)

Theorem (M. and Riveros 2018)
Let f : ¥* — N u {—o0} be definable by unambiguous WA over

(N_o, max, +, —00,0). There exists N such that for all words of the form
u-v-w e X with |[v| = N, v # ¢, there exists a refinement i - ¥ - w of
u - v - w such that one of the conditions holds:

1) f(
2) f(

<>

—~

V' - w) for every i = N.
o't W) for every i = N.

<>

—
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Unambiguous automata (1)

Fix the semiring (N_.,, max, +, —c0, 0)

Theorem (M. and Riveros 2018)
Let f : ¥* — N u {—o0} be definable by unambiguous WA over
(N_o, max, +, —00,0). There exists N such that for all words of the form
u-v-w e X with |[v| = N, v # ¢, there exists a refinement i - ¥ - w of
u - v - w such that one of the conditions holds:

W) = f(i-0" W) for every i = N.

W) < f(h-9"" W) for every i = N.

o Example: f(w) = max(#,(w), #p(w)), fix N from the lemma
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Unambiguous automata (1)

Fix the semiring (N_.,, max, +, —c0, 0)

Theorem (M. and Riveros 2018)
Let f : ¥* — N u {—o0} be definable by unambiguous WA over
(N_o, max, +, —00,0). There exists N such that for all words of the form
u-v-w e X with |[v| = N, v # ¢, there exists a refinement i - ¥ - w of
u - v - w such that one of the conditions holds:
W) = f(i-0" W) for every i = N.
W) < f(h-9"" W) for every i = N.
o Example: f(w) = max(#,(w), #p(w)), fix N from the lemma
F(a@ND* pN o) = (N +1)%  refining a¥*D7 . bV we get aN D7 pn . pm . b/
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Unambiguous automata (1)

Fix the semiring (N_.,, max, +, —c0, 0)

Theorem (M. and Riveros 2018)
Let f : ¥* — N u {—o0} be definable by unambiguous WA over
(N_o, max, +, —00,0). There exists N such that for all words of the form
u-v-w e X with |[v| = N, v # ¢, there exists a refinement i - ¥ - w of
u - v - w such that one of the conditions holds:
W) = f(i-0" W) for every i = N.
W) < f(h-9"" W) for every i = N.
o Example: f(w) = max(#,(w), #p(w)), fix N from the lemma
F(a@ND* pN o) = (N +1)%  refining a¥*D7 . bV we get aN D7 pn . pm . b/
e Since n+ mN + [ < (N + 1)2 then (1). But for i big enough (2)
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Unambiguous automata (2)

Corollary

Unambiguous WA < finitely ambiguous WA over (N_.,, max, +, —0, 0)
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Unambiguous automata (2)

Corollary

Unambiguous WA < finitely ambiguous WA over (N_.,, max, +, —0, 0)

Proof.

Let A unambiguous automaton defining £. And let uvw with v = N >> 2@l
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Unambiguous automata (2)

Corollary
Unambiguous WA < finitely ambiguous WA over (N_.,, max, +, —0, 0)
Proof.

Let A unambiguous automaton defining £. And let uvw with v = N >> 2@l

o if f(uvw) > —o0 then there is a unique accepting run on uvw

Let qo, ..., q|, be the set of states on v
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Unambiguous automata (2)
Corollary
Unambiguous WA < finitely ambiguous WA over (N_.,, max, +, —0, 0)
Proof.

Let A unambiguous automaton defining £. And let uvw with v = N >> 2@l

o if f(uvw) > —o0 then there is a unique accepting run on uvw

Let qo, ..., q|, be the set of states on v

Thereisacycle p=gqj,...,qjfori <j
If the value on p is 0 then (1) otherwise (2)
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Unambiguous automata (2)
Corollary
Unambiguous WA < finitely ambiguous WA over (N_.,, max, +, —0, 0)
Proof.

Let A unambiguous automaton defining £. And let uvw with v = N >> 2@l

o if f(uvw) > —o0 then there is a unique accepting run on uvw

Let qo, ..., q|, be the set of states on v

Thereisacycle p=gqj,...,qjfori <j
If the value on p is 0 then (1) otherwise (2)

o if f(uvw) = —o0 then since there is at most n = exp(|Q|) runs on uvw

(A is unambiguous)
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Unambiguous automata (3)

We can present all runs on v as sequences

(q0,17 I qO,”)? RIS (q|v‘,17 RIS q|v|,n)
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Unambiguous automata (3)

We can present all runs on v as sequences

(q0,17 SRR qO,”)? SKICI) (q|v‘,17 SRICI) q|v‘,n)

e For |v| big enough there is i < j such that

(q,',l, Cee CIi,n) = (%‘,1, ceey qj,n)
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Unambiguous automata (3)

We can present all runs on v as sequences

(q0,17 ceey qO,n)a RIS (q|v‘,17 RIS q|v‘,n)

e For |v| big enough there is i < j such that
(@155 Gin) = (G2, Gin)

e Then /toj is a cycle for all old runs

the output for uv'w for all runs 1, ..., n remain —co
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Unambiguous automata (3)
We can present all runs on v as sequences

(q0,17 ceey qO,n)a RIS (q|v‘,17 RIS q|v‘,n)

e For |v| big enough there is i < j such that

(q,',l, Cee qi,n) = (%‘,1, ceey qj,n)

e Then /toj is a cycle for all old runs

the output for uv'w for all runs 1, ..., n remain —co
e |f new runs occur then the number of runs for uv'w would be at least n + 7 — 1

(contradiction with finite ambiguity)
|

Filip Mazowiecki Automata and sequences 5/ 18



Finitely ambiguous automata (1)

letw=wuy-vi-u1-vw-...u,_1-Vv,- u,

A refinement is w = ug - y1 - Uy Yo ..Uy Yn - U
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Finitely ambiguous automata (1)

letw=wuy-vi-u1-vw-...u,_1-Vv,- u,

A refinement is w = ug - y1 - Uy Yo ..Uy Yn - U

if Vik = Xk * Yk * Zk, u;( = Z) - Uk * XK1, where Z) = Xp41 = €.

and y, # € for every k
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Finitely ambiguous automata (1)

letw=wuy-vi-u1-vw-...u,_1-Vv,- u,

A refinement is w = ug - y1 - Uy Yo ..Uy Yn - U

if Vik = Xk * Yk * Zk, u;( = Z) - Uk * XK1, where Z) = Xp41 = €.

and y, # € for every k

o let Sc{l,...,n}
Then yi(S,i) is y, if k€ S and yi otherwise
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Finitely ambiguous automata (1)

letw=wuy-vi-u1-vw-...u,_1-Vv,- u,

A refinement is w = ug - y1 - Uy Yo ..Uy Yn - U

if Vik = Xk * Yk * Zk, u;( = Z) - Uk * XK1, where Z) = Xp41 = €.

and y, # € for every k

o let Sc{l,...,n}
Then yi(S,i) is y, if k€ S and yi otherwise

By w(S, i) we denote the word

/

w=uy-yi(S,0)-up-yo(S,0) - g - ya(S,0) - up,
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Finitely ambiguous automata (1)

letw=wuy-vi-u1-vw-...u,_1-Vv,- u,

A refinement is w = ug - y1 - Uy Yo ..Uy Yn - U

if Vik = Xk * Yk * Zk, u;( = Z) - Uk * XK1, where Z) = Xp41 = €.

and y, # € for every k

Let S < {1,...,n}
Then yi(S,i) is y, if k€ S and yi otherwise

By w(S, i) we denote the word

w=uy-yi(S,0)-up-yo(S,0) - g - ya(S,0) - up,
Let f : ¥* — N u {—o0}. A refinement is linear if for all S there exists K s.t.
f(w(S,i+1i)) =K+ f(w(S,i)) for all i big enough

For linear refinements we denote A(S) = K
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Finitely ambiguous automata (1)

letw=wuy-vi-u1-vw-...u,_1-Vv,- u,

A refinement is w = ug - y1 - Uy Yo ..Uy Yn - U

if Vik = Xk * Yk * Zk, u;( = Z) - Uk * XK1, where Z) = Xp41 = €.

and y, # € for every k

Let S < {1,...,n}
Then yi(S,i) is y, if k€ S and yi otherwise

By w(S, i) we denote the word
w=uy-yi(S,0)-up-yo(S,0) - g - ya(S,0) - up,
Let f : ¥* — N u {—o0}. A refinement is linear if for all S there exists K s.t.
f(w(S,i+1i)) =K+ f(w(S,i)) for all i big enough
For linear refinements we denote A(S) = K

S is decomposable if A(S) = > s A({j})
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Finitely ambiguous automata (2)

Theorem
Let f definable by finitely ambiguous automaton over (N_.,, max, +, —c0, 0).
There exists N € N such that for every w = up - vi -ty - vo - ... V- Uy, Where

n > N and and |v;| = N for all i, there exists a linear refinement
W=X0 Y1 X1"Y2 - Yn" Xn

such that for every sequence of pairwise different, non-empty sets
51,5,...5< {1,...,n} with kK = N, one of the following holds:
(1) exists j s.t. S; is not decomposable

(2) exist j1 and jp s.t. {h, h} is decomposable for every I; € S; and h € Sj,.
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Finitely ambiguous automata (2)

Theorem
Let f definable by finitely ambiguous automaton over (N_.,, max, +, —c0, 0).
There exists N € N such that for every w = up - vi -ty - vo - ... V- Uy, Where

n > N and and |v;| = N for all i, there exists a linear refinement
W=X0 Y1 X1"Y2 - Yn" Xn

such that for every sequence of pairwise different, non-empty sets
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e Example : f longest block of b's.  Let N from the lemma
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Finitely ambiguous automata (2)

Theorem
Let f definable by finitely ambiguous automaton over (N_.,, max, +, —c0, 0).
There exists N € N such that for every w = up - vi -ty - vo - ... V- Uy, Where

n > N and and |v;| = N for all i, there exists a linear refinement
W=X0 Y1 X1"Y2 - Yn" Xn

such that for every sequence of pairwise different, non-empty sets
51,5,...5< {1,...,n} with kK = N, one of the following holds:
(1) exists j s.t. S; is not decomposable

(2) exist j1 and jp s.t. {h, h} is decomposable for every I; € S; and h € Sj,.

e Example : f longest block of b's.  Let N from the lemma
Let (bM*1a)Nt1  and define S; = {j}
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Finitely ambiguous automata (2)

Theorem
Let f definable by finitely ambiguous automaton over (N_.,, max, +, —c0, 0).
There exists N € N such that for every w = up - vi -ty - vo - ... V- Uy, Where

n > N and and |v;| = N for all i, there exists a linear refinement
W=X0 Y1 X1"Y2 - Yn" Xn

such that for every sequence of pairwise different, non-empty sets
51,5,...5< {1,...,n} with kK = N, one of the following holds:
(1) exists j s.t. S; is not decomposable

(2) exist j1 and jp s.t. {h, h} is decomposable for every I; € S; and h € Sj,.

e Example : f longest block of b's.  Let N from the lemma
Let (bM*1a)Nt1  and define S; = {j}

Every S; is decomposable but any {ji, >} is not decomposable
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Finitely ambiguous automata (3)

Corollary

Finitely ambiguous WA < poly-ambiguous WA over (N_,, max, +, —c0, 0)
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Finitely ambiguous automata (3)

Corollary

Finitely ambiguous WA < poly-ambiguous WA over (N_,, max, +, —c0, 0)

e Proof.

Suppose f is recognised by A which is m-ambiguous, |Q| = r and f(w) > —o0
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Finitely ambiguous automata (3)
Corollary
Finitely ambiguous WA < poly-ambiguous WA over (N_,, max, +, —c0, 0)
e Proof.

Suppose f is recognised by A which is m-ambiguous, |Q| = r and f(w) > —o0

e Set N = max{r”, m} + 1.
The refinement is defined in such a way that every y; is a cycle

on all accepting runs
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Finitely ambiguous automata (3)

Corollary

Finitely ambiguous WA < poly-ambiguous WA over (N_,, max, +, —c0, 0)
¢ Proof.
Suppose f is recognised by A which is m-ambiguous, |Q| = r and f(w) > —o0

e Set N = max{r”, m} + 1.
The refinement is defined in such a way that every y; is a cycle

on all accepting runs

e Such a refinement is linear

and A(S) is determined by maximal cycle weights in blocks in S
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Finitely ambiguous automata (3)
Corollary
Finitely ambiguous WA < poly-ambiguous WA over (N_,, max, +, —c0, 0)
e Proof.

Suppose f is recognised by A which is m-ambiguous, |Q| = r and f(w) > —o0

e Set N = max{r”, m} + 1.
The refinement is defined in such a way that every y; is a cycle

on all accepting runs

e Such a refinement is linear

and A(S) is determined by maximal cycle weights in blocks in S

e We will assume there are only accepting runs (to simplify technicalities)

Filip Mazowiecki Automata and sequences 8/ 18



Finitely ambiguous automata (4)

Denote runs by p1,..., om

Filip Mazowiecki Automata and sequences 9/ 18



Finitely ambiguous automata (4)
Denote runs by p1,..., pm

e Notice that by pumping y; the number of runs cannot increase

(otherwise a contradiction with finitely ambiguous)
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Finitely ambiguous automata (4)
Denote runs by p1,..., pm
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(otherwise a contradiction with finitely ambiguous)

e So for all S; the number of runs in w(5;, i) is m

and they come from p1,..., pm
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Finitely ambiguous automata (4)
Denote runs by p1,..., pm

e Notice that by pumping y; the number of runs cannot increase

(otherwise a contradiction with finitely ambiguous)

e So for all S; the number of runs in w(5;, i) is m

and they come from p1,..., pm

e Forevery je {l,...,n} and [ € {1,...,m} let p;|j] be the corresponding cycle
Let wt(p[j]) be its weight
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Finitely ambiguous automata (4)
Denote runs by p1,..., pm

e Notice that by pumping y; the number of runs cannot increase

(otherwise a contradiction with finitely ambiguous)

e So for all S; the number of runs in w(5;, i) is m

and they come from p1,..., pm

e Forevery je {l,...,n} and [ € {1,...,m} let p;|j] be the corresponding cycle
Let wt(p[j]) be its weight

e A cycle p/|j] is dominant if wt(p|j]) = wt(py|j]) forall I'e {1,..., m}
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Finitely ambiguous automata (4)
Denote runs by p1,..., pm

e Notice that by pumping y; the number of runs cannot increase

(otherwise a contradiction with finitely ambiguous)

e So for all S; the number of runs in w(5;, i) is m

and they come from p1,..., pm

e Forevery je {l,...,n} and [ € {1,...,m} let p;|j] be the corresponding cycle
Let wt(p[j]) be its weight

e A cycle p/|j] is dominant if wt(p|j]) = wt(py|j]) forall I'e {1,..., m}

e If a cycle p|j] is dominant then A({j}) = wt(py[/])

Filip Mazowiecki Automata and sequences 9/ 18



Finitely ambiguous automata (5)

Lemma
Let S < {1,...,n} a linear refinement. Then S is decomposable iff for one of

the runs p the cycle p[j] is dominant for all j € S.
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Finitely ambiguous automata (5)

Lemma
Let S < {1,...,n} a linear refinement. Then S is decomposable iff for one of

the runs p the cycle p[j] is dominant for all j € S.

Proof. (=)

Let p be such that > . s wt(plj]) is maximal
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Finitely ambiguous automata (5)

Lemma
Let S < {1,...,n} a linear refinement. Then S is decomposable iff for one of

the runs p the cycle p[j] is dominant for all j € S.

Proof. (=)

Let p be such that > . s wt(plj]) is maximal

e We claim that p satisfies the lemma
By definition A(S) = >,..s wt(plj])
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Finitely ambiguous automata (5)

Lemma
Let S < {1,...,n} a linear refinement. Then S is decomposable iff for one of

the runs p the cycle p[j] is dominant for all j € S.

Proof. (=)

Let p be such that > . s wt(plj]) is maximal

e We claim that p satisfies the lemma
By definition A(S) = >,..s wt(plj])

e For a contradiction let j* s.t. wt(p[j*]) < A({j*})
Then A(S) = > s wt(plj]) < Dies AU}
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Finitely ambiguous automata (5)

Lemma
Let S < {1,...,n} a linear refinement. Then S is decomposable iff for one of

the runs p the cycle p[j] is dominant for all j € S.

Proof. (=)

Let p be such that > . s wt(plj]) is maximal

e We claim that p satisfies the lemma
By definition A(S) = >,..s wt(plj])

e For a contradiction let j* s.t. wt(p[j*]) < A({j*})
Then A(S) = Zjes wt(plj]) < ZJES A{j})

e A contradiction with S being linear
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Finitely ambiguous automata (6)

(<) Let p be s.t. p|j] is dominant for all j € S
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Finitely ambiguous automata (6)

(<) Let p be s.t. p|/| is dominant for all j€ S

o Then > . s wt(plj]) = > s wt(p'j]) for any other run o/
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Finitely ambiguous automata (6)

(<) Let p be s.t. p|/| is dominant for all j€ S

o Then > . s wt(plj]) = > ics wt(p'[j]) for any other run o'

e So when pumping w(S, i) the value increases by > ;s wt(p|/])
Which is equal to > ;.5 A({j}) since cycles are dominant
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Finitely ambiguous automata (6)

(<) Let p be s.t. p|/| is dominant for all j€ S

o Then > . s wt(plj]) = > ics wt(p'[j]) for any other run o'

e So when pumping w(S, i) the value increases by > s wt(p[/])

Which is equal to >

jes A({j}) since cycles are dominant

e To prove the theorem suppose all S; are decomposable

By lemma for all 5; there is p;. in which all cycles are dominant
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Finitely ambiguous automata (6)
(<) Let p be s.t. p|/| is dominant for all j€ S

o Then > . s wt(plj]) = > ics wt(p'[j]) for any other run o'

e So when pumping w(S, i) the value increases by > s wt(p[/])

Which is equal to >

jes A({j}) since cycles are dominant

e To prove the theorem suppose all S; are decomposable

By lemma for all 5; there is p;. in which all cycles are dominant

e By choice of N there are more sets than runs so [, = [;, for some j; # j»
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Finitely ambiguous automata (6)
(<) Let p be s.t. p|/| is dominant for all j€ S

o Then > . s wt(plj]) = > ics wt(p'[j]) for any other run o'

e So when pumping w(S, i) the value increases by > ;s wt(p|/])
Which is equal to > ;.5 A({j}) since cycles are dominant

|
e To prove the theorem suppose all S; are decomposable
By lemma for all 5; there is p;. in which all cycles are dominant
e By choice of N there are more sets than runs so [, = [;, for some j; # j»
o By lemma {ki, ko} is decomposable for every k; € S, and ky € S,
|
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Polynomially ambiguous automata (1)

Let S1,...,Sm over {1,...,n} a partition (S; nonempty, pairwise disjoint)
We say that S < {1, ..., n} is a selection set if |S N S;| = 1 for every i.
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Polynomially ambiguous automata (1)

Let S1,...,Sm over {1,...,n} a partition (S; nonempty, pairwise disjoint)
We say that S < {1, ..., n} is a selection set if |S N S;| = 1 for every i.
Theorem

Let  poly-ambiguous over (N_,,, max, +, —00,0). There exist N and a func-
tion ¢ : N — N such thatforall w = ug - vi w1 - vo - ... up_1 - vy - up, where

lvi| = N for every 1 < i < n, there exists a linear refinement

/ / / /
W:uo.)ﬂ.ul.ﬁ...un_l.ﬁ.un’

such that for every partition 7 = 51, 5,,...5, of {1,... n} with m >
¢(max;(|5j])) one of the following holds:
(1) there exists j such that S; is decomposable;

(2) there exists a selection set S for m such that S is not decomposable.
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Polynomially ambiguous automata (2)

Example wo#wi# . .. #w, with w; € {a, b}
f(w) = 2o max{|wila, [wils}
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Polynomially ambiguous automata (2)

Example wo#wi# . .. #w, with w; € {a, b}
f(w) = 2o max{|wila, [wils}

e Fix N and ¢ from the theorem. Let m > ¢(2)

consider refinements of (a" bV#)™
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Polynomially ambiguous automata (2)

Example wo#wi# . .. #w, with w; € {a, b}
f(w) = 2o max{|wila, [wils}

e Fix N and ¢ from the theorem. Let m > ¢(2)
consider refinements of (a" bV#)™

denote by j,j' € {1,..., m} blocks of aand b S; = {j, '} (not decomposable)
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Polynomially ambiguous automata (2)

Example wo#wi# . .. #w, with w; € {a, b}
f(w) = 2o max{|wila, [wils}

e Fix N and ¢ from the theorem. Let m > ¢(2)
consider refinements of (a" bV#)™
denote by j,j' € {1,...,m} blocks of aand b S; = {j,j'} (not decomposable)

But every selection set is decomposable

Filip Mazowiecki Automata and sequences 13/ 18



Polynomially ambiguous automata (3)

Corollary

Poly-ambiguous WA < WA over (N_,, max, +, —0,0)
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Polynomially ambiguous automata (3)
Corollary
Poly-ambiguous WA < WA over (N_,, max, +, —0,0)
Decision problems for weighted automata

e Is a given automaton A finitely ambiguous, polynomially ambiguous?
in NLOGSPACE (tutorials)
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Polynomially ambiguous automata (3)
Corollary
Poly-ambiguous WA < WA over (N_,, max, +, —0,0)
Decision problems for weighted automata
e Is a given automaton A finitely ambiguous, polynomially ambiguous?

in NLOGSPACE (tutorials)

e Given an automaton A is there an equivalent deterministic automaton 57

Long-standing open problem for (N, ., min, +,00,0) and (N_., max, +, —0,0)
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Polynomially ambiguous automata (3)
Corollary
Poly-ambiguous WA < WA over (N_,, max, +, —0,0)
Decision problems for weighted automata

e Is a given automaton A finitely ambiguous, polynomially ambiguous?

in NLOGSPACE (tutorials)

e Given an automaton A is there an equivalent deterministic automaton 57
Long-standing open problem for (N, ., min, +,00,0) and (N_., max, +, —0,0)

(less popular) open problem for (Q, +,-,0,1)
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Polynomially ambiguous automata (3)

Corollary

Poly-ambiguous WA < WA over (N_,, max, +, —0,0)

Decision problems for weighted automata

e Is a given automaton A finitely ambiguous, polynomially ambiguous?
in NLOGSPACE (tutorials)

e Given an automaton A is there an equivalent deterministic automaton 57
Long-standing open problem for (N, ., min, +,00,0) and (N_., max, +, —0,0)
(less popular) open problem for (Q, +,-,0,1)

e Partial results: decidable for (N, ., min, +,00,0) and (N_,,, max, +, —00,0)
If we assume that A is unambiguous, finitely ambiguous or poly-ambiguous

Filip Mazowiecki Automata and sequences 14 / 18



Decision problems for weighted automata (2)

Variants of the classical emptiness problems for finite automata
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Decision problems for weighted automata (2)

Variants of the classical emptiness problems for finite automata

e Emptiness: Given A is there a word w such that:

[A] (w) =¢c, or[A](w)=c, or[A](w)<c
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Variants of the classical emptiness problems for finite automata

e Emptiness: Given A is there a word w such that:

[A] (w) =¢c, or[A](w)=c, or[A](w)<c

Usually undecidable or trivially decidable
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Decision problems for weighted automata (2)

Variants of the classical emptiness problems for finite automata

e Emptiness: Given A is there a word w such that:

[A] (w) =¢c, or[A](w)=c, or[A](w)<c
Usually undecidable or trivially decidable

[A] (w) = 0 undecidable for (Q, +,-,0,1) (next slide)
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Decision problems for weighted automata (2)

Variants of the classical emptiness problems for finite automata

e Emptiness: Given A is there a word w such that:

[A] (w) =¢c, or[A](w)=c, or[A](w)<c
Usually undecidable or trivially decidable

[A] (w) = 0 undecidable for (Q, +,-,0,1) (next slide)
But assuming 1-letter alphabet this is equivalent to the problem:

Given a linear recursive sequence ug, uy, ... isthere ne Ns.t. u, =0
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Decision problems for weighted automata (2)

Variants of the classical emptiness problems for finite automata

e Emptiness: Given A is there a word w such that:

[A] (w) =¢c, or[A](w)=c, or[A](w)<c
Usually undecidable or trivially decidable

[A] (w) = 0 undecidable for (Q, +,-,0,1) (next slide)
But assuming 1-letter alphabet this is equivalent to the problem:

Given a linear recursive sequence ug, uy, ... isthere ne Ns.t. u, =0

This is known as the Skolem problem (open for many years)

Next two weeks there will be a result related to this problem
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Decision problems for weighted automata (3)

Theorem (Bertoni 1974)
Fix the semiring (Q, +,+,0,1). The problem if given A is there a word w such
that [.A] (w) = 0 is undecidable.
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Decision problems for weighted automata (3)

Theorem (Bertoni 1974)
Fix the semiring (Q, +,+,0,1). The problem if given A is there a word w such
that [.A] (w) = 0 is undecidable.

Proof.
We reduce from the Post correspondence problem

Given two morphisms @1, iy : X — {0,1}" is there a word w

s.t. p1(w) = po(w)
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Decision problems for weighted automata (3)

Theorem (Bertoni 1974)
Fix the semiring (Q, +,+,0,1). The problem if given A is there a word w such
that [.A] (w) = 0 is undecidable.

Proof.
We reduce from the Post correspondence problem

Given two morphisms @1, iy : X — {0,1}" is there a word w

s.t. p1(w) = po(w)

For example p1(a) = 0, p1(b) = 10011, (y(a) =001, pa(b) =1
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Decision problems for weighted automata (3)

Theorem (Bertoni 1974)
Fix the semiring (Q, +,+,0,1). The problem if given A is there a word w such
that [.A] (w) = 0 is undecidable.

Proof.
We reduce from the Post correspondence problem

Given two morphisms @1, iy : X — {0,1}" is there a word w

s.t. p1(w) = po(w)

For example p1(a) = 0, p1(b) = 10011, (y(a) =001, pa(b) =1
Then 1(aab) = py(aab) = 0010011
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Decision problems for weighted automata (3)

Theorem (Bertoni 1974)
Fix the semiring (Q, +,+,0,1). The problem if given A is there a word w such
that [.A] (w) = 0 is undecidable.

Proof.
We reduce from the Post correspondence problem

Given two morphisms @1, iy : X — {0,1}" is there a word w

s.t. p1(w) = po(w)

For example p1(a) = 0, p1(b) = 10011, (y(a) =001, pa(b) =1
Then 1(aab) = py(aab) = 0010011

e One can assume that if such a w exists then the last letter of w is 1
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Decision problems for weighted automata (4)

L:; 1:1
1

—C)

O:% 0:1
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Decision problems for weighted automata (4)

N
|—l
—

o A(ajay. .. a,,) = bin(a; . .. a,) 1:
- Z/ 1 21

—
N

N
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Decision problems for weighted automata (4)

N
'—l
|_l

o A(ajay. .. a,,) = bin(a; . .. a,) 1:
- Z/ 1 2/

.1
0:1

e Notice that (almost) every w has a unique value [A] (w)

(assuming w ends with 1)
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Decision problems for weighted automata (4)

N
'—l
|_l

o A(3132 .ap) = bin(ay ... a,) 1:
- Z/ 1 2/

.1
0:1

e Notice that (almost) every w has a unique value [A] (w)

(assuming w ends with 1)

e Given a morphism ¢ : ¥ — {0, 1}" we define A, s.t.

[Ag] (w) = bin(p(w))
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Decision problems for weighted automata (5)

L1
1:3 1:1
1
=
O:% O].
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Decision problems for weighted automata (5)

1
e Say p(a) =01 1:3 1:1
O
O:% 0:1
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Decision problems for weighted automata (5)

e Say p(a) =01
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Decision problems for weighted automata (5)

e Say p(a) =01

e Define A, and A,
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Decision problems for weighted automata (5)
1
a3 a:l
1

o Then A defined as A, — A, has the property that

e Say p(a) =01

e Define A, and A,

A(w) = 0 iff the Post correspondence instance is valid
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