# Lecture 8

NP-hardness of Skolem and undecidability for  $\min$ , + weighted automata

Over  $(\mathbb{Q}, +, \cdot, 0, 1)$ , is there *n* such that  $u_n = 0$ ?

Over  $(\mathbb{Q}, +, \cdot, 0, 1)$ , is there *n* such that  $u_n = 0$ ?

**Theorem** (Blondel and Portier 2002; Akshay et al. 2020)

The Skolem problem is NP-hard

Over  $(\mathbb{Q}, +, \cdot, 0, 1)$ , is there *n* such that  $u_n = 0$ ?

**Theorem** (Blondel and Portier 2002; Akshay et al. 2020)

The Skolem problem is NP-hard

### Proof.

We reduce from 3-SAT. Fix:  $x_1, \ldots, x_s$ 

Over  $(\mathbb{Q}, +, \cdot, 0, 1)$ , is there *n* such that  $u_n = 0$ ?

## **Theorem** (Blondel and Portier 2002; Akshay et al. 2020)

The Skolem problem is NP-hard

### Proof.

We reduce from 3-SAT. Fix:  $x_1, \ldots, x_s$ 

Let  $p_1, \ldots, p_s$  be the first s prime numbers

For every  $j \in \{1, ..., s\}$  we define

$$u_n^j = \begin{cases} 0 & \text{for } 1 \leqslant n < p_j \\ 1 & \text{for } n = p_j \\ u_{n-p_i}^i & \text{for } n > p_j \end{cases}$$

Let 
$$\varphi = C_1 \wedge \ldots \wedge C_m$$
  
and  $C_i = v_{i_1} \vee v_{i_2} \vee v_{i_3}$ 

Let 
$$\varphi = C_1 \wedge \ldots \wedge C_m$$
  
and  $C_i = v_{i_1} \vee v_{i_2} \vee v_{i_3}$ 

For every  $i_l$ , where  $i \in \{1, 2, 3\}$  let

$$y^{i_l} = \begin{cases} 1 - u^k & \text{if } v_{i_l} = x_k \text{ for some } k \in \{1, \dots, s\} \\ u^k & \text{if } v_{i_l} = \neg x_k \text{ for some } k \in \{1, \dots, s\} \end{cases}$$

Let 
$$\varphi = C_1 \wedge \ldots \wedge C_m$$
  
and  $C_i = v_{i_1} \vee v_{i_2} \vee v_{i_3}$ 

For every  $i_l$ , where  $i \in \{1, 2, 3\}$  let

$$y^{i_l} = \begin{cases} 1 - u^k & \text{if } v_{i_l} = x_k \text{ for some } k \in \{1, \dots, s\} \\ u^k & \text{if } v_{i_l} = \neg x_k \text{ for some } k \in \{1, \dots, s\} \end{cases}$$

Define the sequences  $y^i = y^{i_1}y^{i_2}y^{i_3}$  for all  $i \in \{1, ..., m\}$ 

And 
$$y = y^1 + \ldots + y^m$$

Let 
$$\varphi = C_1 \wedge \ldots \wedge C_m$$
  
and  $C_i = v_{i_1} \vee v_{i_2} \vee v_{i_3}$ 

For every  $i_l$ , where  $i \in \{1, 2, 3\}$  let

$$y^{i_l} = \begin{cases} 1 - u^k & \text{if } v_{i_l} = x_k \text{ for some } k \in \{1, \dots, s\} \\ u^k & \text{if } v_{i_l} = \neg x_k \text{ for some } k \in \{1, \dots, s\} \end{cases}$$

Define the sequences  $y^i = y^{i_1}y^{i_2}y^{i_3}$  for all  $i \in \{1, \dots, m\}$ 

And 
$$y = y^1 + \ldots + y^m$$

Let  $f: \mathbb{N} \to \{0,1\}^s$  defined as

$$f(n)=(a_1,\ldots,a_s)$$

where  $a_i = 1 \iff p_i | n$ 

$$f(n) = (a_1, \ldots, a_s)$$
 is an evaluation of  $x_1, \ldots, x_s$ 

### **Fact**

$$y_n^i = 0$$
 iff  $f(n)$  satisfies  $C_i$ 

$$f(n) = (a_1, \ldots, a_s)$$
 is an evaluation of  $x_1, \ldots, x_s$ 

### **Fact**

$$y_n^i = 0$$
 iff  $f(n)$  satisfies  $C_i$ 

### **Theorem**

 $\varphi$  is satisfiable iff there is n s.t.  $y_n = 0$ .

### Weighted automata

Decision problems:

Containment: Given  $\mathcal{A}$  and  $\mathcal{B}$  does  $\mathcal{A}(w) \leq \mathcal{B}(w)$  hold for all w

Equivalence: Given  $\mathcal{A}$  and  $\mathcal{B}$  does  $\mathcal{A}(w) = \mathcal{B}(w)$  hold for all w

Boundedness: Given  $\mathcal{A}$  and c does  $\mathcal{A}(w) \leq c$  hold for all w

(given  $\mathcal{A}$  and c is there a word w s.t.  $\mathcal{A}(w) > c$ )

Boundedness (2): Given A and c is there a word w s.t. A(w) = c?

## Weighted automata

Decision problems:

Containment: Given  $\mathcal{A}$  and  $\mathcal{B}$  does  $\mathcal{A}(w) \leq \mathcal{B}(w)$  hold for all w

Equivalence: Given  $\mathcal{A}$  and  $\mathcal{B}$  does  $\mathcal{A}(w) = \mathcal{B}(w)$  hold for all w

Boundedness: Given  $\mathcal{A}$  and c does  $\mathcal{A}(w) \leqslant c$  hold for all w

(given  $\mathcal{A}$  and c is there a word w s.t.  $\mathcal{A}(w) > c$ )

Boundedness (2): Given A and c is there a word w s.t. A(w) = c?

• These definitions make sense if ≤ makes sense in the semiring

## Weighted automata

### Decision problems:

Containment: Given  $\mathcal{A}$  and  $\mathcal{B}$  does  $\mathcal{A}(w) \leqslant \mathcal{B}(w)$  hold for all wEquivalence: Given  $\mathcal{A}$  and  $\mathcal{B}$  does  $\mathcal{A}(w) = \mathcal{B}(w)$  hold for all wBoundedness: Given  $\mathcal{A}$  and c does  $\mathcal{A}(w) \leqslant c$  hold for all w(given  $\mathcal{A}$  and c is there a word w s.t.  $\mathcal{A}(w) > c$ )

Boundedness (2): Given A and c is there a word w s.t. A(w) = c?

- These definitions make sense if ≤ makes sense in the semiring
- Decidability of containment  $\implies$  decidability of boundedness: define  $\mathcal{B}(w) = c$  for all c.

### **Decision problems**

• Over (min, +) containment and equivalence are interreducible

decidable containment  $\implies$  decidable equivalence: check  $\mathcal{A} \leqslant \mathcal{B}$  and  $\mathcal{B} \leqslant \mathcal{A}$ 

## **Decision problems**

• Over (min, +) containment and equivalence are interreducible

decidable containment  $\implies$  decidable equivalence: check  $\mathcal{A} \leqslant \mathcal{B}$  and  $\mathcal{B} \leqslant \mathcal{A}$ 

decidable equivalence  $\implies$  decidable containment: let  $\mathcal{C} = \min(\mathcal{A}, \mathcal{B})$ 

 $\mathcal{C} = \mathcal{A}$  is equivalent to  $\mathcal{A} \leqslant \mathcal{B}$ 

## **Decision problems**

• Over (min, +) containment and equivalence are interreducible

decidable containment  $\implies$  decidable equivalence: check  $\mathcal{A} \leqslant \mathcal{B}$  and  $\mathcal{B} \leqslant \mathcal{A}$  decidable equivalence  $\implies$  decidable containment: let  $\mathcal{C} = \min(\mathcal{A}, \mathcal{B})$ 

 $\mathcal{C} = \mathcal{A}$  is equivalent to  $\mathcal{A} \leqslant \mathcal{B}$ 

• But over  $(\mathbb{Q}, +, \cdot, 0, 1)$  containment is undecidable (because boundedness is undecidable)

While equivalence is decidable (possibly a proof in two weeks)

**Theorem** (Krob 1994, Almagor et al. 2011)

The boundedness problem for weighted automata over  $(\mathbb{Z}_{+\infty}, \min, +, \infty, 0)$  is undecidable.

### **Theorem** (Krob 1994, Almagor et al. 2011)

The boundedness problem for weighted automata over  $(\mathbb{Z}_{+\infty}, \min, +, \infty, 0)$  is undecidable.

### Proof.

Reduce from a two counter Minsky machine.

Given  $\mathcal{M}$  is there a halting run ending with 0 in the counters?

## **Theorem** (Krob 1994, Almagor et al. 2011)

The boundedness problem for weighted automata over  $(\mathbb{Z}_{+\infty}, \min, +, \infty, 0)$  is undecidable.

### Proof.

Reduce from a two counter Minsky machine.

Given  $\mathcal{M}$  is there a halting run ending with 0 in the counters?

•  $\mathcal{M}$  is a sequence of lines  $I_1, \ldots, I_n$  with commands

Possible commands for  $c \in \{x, y\}$ 

$$INC(c)$$
,  $DEC(c)$ 

GOTO 
$$I_i$$
, IF  $c = 0$  GOTO  $I_i$  ELSE GOTO  $I_j$ 

HALT

### **Theorem** (Krob 1994, Almagor et al. 2011)

The boundedness problem for weighted automata over  $(\mathbb{Z}_{+\infty}, \min, +, \infty, 0)$  is undecidable.

### Proof.

Reduce from a two counter Minsky machine.

Given  $\mathcal{M}$  is there a halting run ending with 0 in the counters?

•  $\mathcal{M}$  is a sequence of lines  $I_1, \ldots, I_n$  with commands

Possible commands for  $c \in \{x, y\}$ 

$$INC(c)$$
,  $DEC(c)$ 

GOTO 
$$I_i$$
, IF  $c = 0$  GOTO  $I_i$  ELSE GOTO  $I_i$ 

HALT

One can assume that counters can never drop below 0

Weighted automaton A, alphabet is

$$\Sigma = \{INC(x), DEC(x), INC(y), DEC(y)\} \cup \{GOTO \ l_1, \dots, GOTO \ l_n\}$$

Weighted automaton A, alphabet is

$$\Sigma = \{INC(x), DEC(x), INC(y), DEC(y)\} \cup \{GOTO \ l_1, \dots, GOTO \ l_n\}$$

Is there a word w with value  $\mathcal{A}(w) = 1$  (or value  $\mathcal{A}(w) \ge 1$ )?

Weighted automaton A, alphabet is

$$\Sigma = \{INC(x), DEC(x), INC(y), DEC(y)\} \cup \{GOTO \ I_1, \ldots, GOTO \ I_n\}$$

Is there a word w with value A(w) = 1 (or value  $A(w) \ge 1$ )?

Rough idea: if the input word gives an accepting run in  $\mathcal M$  then  $\mathcal A$  outputs 1 Otherwise: there will be a run in  $\mathcal A$  of value <1 and  $\mathcal A$  outputs <1

Weighted automaton A, alphabet is

$$\Sigma = \{INC(x), DEC(x), INC(y), DEC(y)\} \cup \{GOTO \ I_1, \dots, GOTO \ I_n\}$$

Is there a word w with value  $\mathcal{A}(w) = 1$  (or value  $\mathcal{A}(w) \ge 1$ )?

Rough idea: if the input word gives an accepting run in  $\mathcal M$  then  $\mathcal A$  outputs 1 Otherwise: there will be a run in  $\mathcal A$  of value <1 and  $\mathcal A$  outputs <1

• There will be 5 components (to detect different errors)

Weighted automaton A, alphabet is

$$\Sigma = \{INC(x), DEC(x), INC(y), DEC(y)\} \cup \{GOTO \ I_1, \dots, GOTO \ I_n\}$$

Is there a word w with value A(w) = 1 (or value  $A(w) \ge 1$ )?

Rough idea: if the input word gives an accepting run in  ${\mathcal M}$  then  ${\mathcal A}$  outputs 1 Otherwise: there will be a run in  ${\mathcal A}$  of value < 1 and  ${\mathcal A}$  outputs < 1

• There will be 5 components (to detect different errors)

Each has states  $\{q_1, \ldots, q_n\}$  (one for each  $I_i$ )

And shared states  $\{q_{freeze}, q_{halt}\}$ 

Almost all initial/final weights are 0

Weighted automaton A, alphabet is

$$\Sigma = \{INC(x), DEC(x), INC(y), DEC(y)\} \cup \{GOTO \ I_1, \dots, GOTO \ I_n\}$$

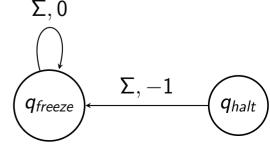
Is there a word w with value A(w) = 1 (or value  $A(w) \ge 1$ )?

Rough idea: if the input word gives an accepting run in  ${\mathcal M}$  then  ${\mathcal A}$  outputs 1 Otherwise: there will be a run in  ${\mathcal A}$  of value < 1 and  ${\mathcal A}$  outputs < 1

• There will be 5 components (to detect different errors)

Each has states  $\{q_1, \ldots, q_n\}$  (one for each  $I_i$ ) And shared states  $\{q_{freeze}, q_{halt}\}$ 

Almost all initial/final weights are 0



### 1. Command checker

Check if (when ignoring the counters) the run is ok

### 1. Command checker

Check if (when ignoring the counters) the run is ok

• Suppose you're in state  $q_i$  and read letter aIf command i is INC(c) then if  $a = q_i$  add a transition  $(q_i, a, 0, q_{i+1})$ 

### 1. Command checker

Check if (when ignoring the counters) the run is ok

• Suppose you're in state  $q_i$  and read letter aIf command i is INC(c) then if  $a=q_i$  add a transition  $(q_i,a,0,q_{i+1})$ If command i is IF c=0 GOTO  $I_j$  ELSE GOTO  $I_{j'}$ then if a=GOTO  $I_k$  for  $k \in \{j,j'\}$  add two transitions (for each k)  $(q_i,a,0,q_k)$ 

### 1. Command checker

Check if (when ignoring the counters) the run is ok

• Suppose you're in state  $q_i$  and read letter a If command i is INC(c) then if  $a=q_i$  add a transition  $(q_i,a,0,q_{i+1})$  If command i is IF c=0 GOTO  $I_j$  ELSE GOTO  $I_{j'}$  then if a=GOTO  $I_k$  for  $k\in\{j,j'\}$  add two transitions (for each k)  $(q_i,a,0,q_k)$ 

If a "doesn't match"  $q_i$  then add a transition  $(q_i, a, 0, q_{freeze})$ 

### 1. Command checker

Check if (when ignoring the counters) the run is ok

- Suppose you're in state  $q_i$  and read letter aIf command i is INC(c) then if  $a=q_i$  add a transition  $(q_i,a,0,q_{i+1})$ If command i is IF c=0 GOTO  $I_j$  ELSE GOTO  $I_{j'}$ then if a=GOTO  $I_k$  for  $k\in\{j,j'\}$  add two transitions (for each k)  $(q_i,a,0,q_k)$ If a "doesn't match"  $q_i$  then add a transition  $(q_i,a,0,q_{freeze})$
- If i-th command is HALT and a = HALT then add  $(q_i, a, 1, q_{halt})$

### 1. Command checker

Check if (when ignoring the counters) the run is ok

- Suppose you're in state  $q_i$  and read letter a If command i is INC(c) then if  $a=q_i$  add a transition  $(q_i,a,0,q_{i+1})$  If command i is IF c=0 GOTO  $I_j$  ELSE GOTO  $I_{j'}$  then if a=GOTO  $I_k$  for  $k\in\{j,j'\}$  add two transitions (for each k)  $(q_i,a,0,q_k)$ 
  - If a "doesn't match"  $q_i$  then add a transition  $(q_i, a, 0, q_{freeze})$
- ullet If *i*-th command is HALT and a=HALT then add  $(q_i,a,1,q_{halt})$ 
  - Note that a correct run will have weight 1 and others will have weight 0

## 2., 3. Positive jump checker

One for each  $c \in \{x, y\}$ 

The transitions are almost like before

On a fresh copy of  $q_1, \ldots, q_k$ 

## 2., 3. Positive jump checker

One for each  $c \in \{x, y\}$ 

The transitions are almost like before On a fresh copy of  $q_1, \ldots, q_k$ 

• Here in states if IF c = 0 GOTO  $I_j$  ELSE GOTO  $I_k$  if we read GOTO  $I_k$  we want to know that counter c was positive

## 2., 3. Positive jump checker

One for each  $c \in \{x, y\}$ 

The transitions are almost like before On a fresh copy of  $q_1, \ldots, q_k$ 

- Here in states if  $IF \ c = 0 \ GOTO \ I_j \ ELSE \ GOTO \ I_k$  if we read  $GOTO \ I_k$  we want to know that counter c was positive
- When reading INC(c) change weight to 1 and when reading DEC(c) change to -1

## 2., 3. Positive jump checker

One for each  $c \in \{x, y\}$ 

The transitions are almost like before On a fresh copy of  $q_1, \ldots, q_k$ 

- Here in states if IF c = 0 GOTO  $I_j$  ELSE GOTO  $I_k$  if we read GOTO  $I_k$  we want to know that counter c was positive
- When reading INC(c) change weight to 1 and when reading DEC(c) change to -1

Other weights (that don't go to  $q_{freeze}$ ) remain 0 and HALT remains 1

## 2., 3. Positive jump checker

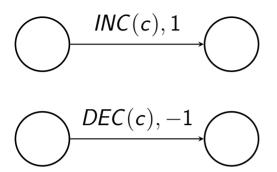
One for each  $c \in \{x, y\}$ 

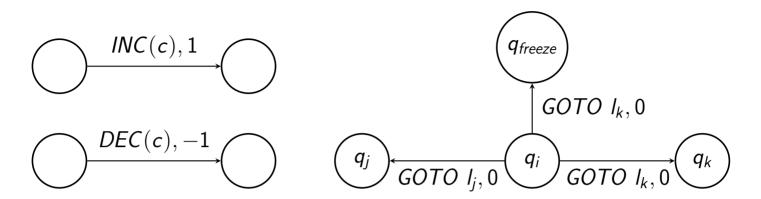
The transitions are almost like before On a fresh copy of  $q_1, \ldots, q_k$ 

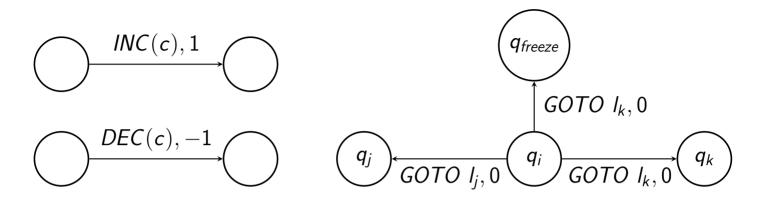
- Here in states if IF c = 0 GOTO  $I_j$  ELSE GOTO  $I_k$  if we read GOTO  $I_k$  we want to know that counter c was positive
- When reading INC(c) change weight to 1 and when reading DEC(c) change to -1

Other weights (that don't go to  $q_{freeze}$ ) remain 0 and HALT remains 1

• Positivity checks with *q*<sub>freeze</sub>

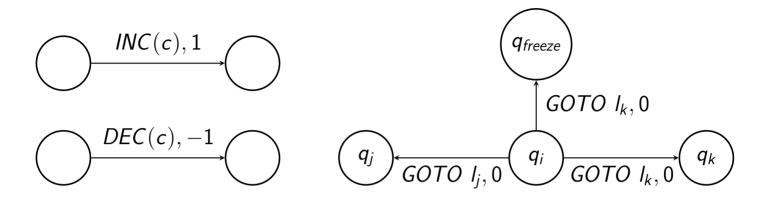




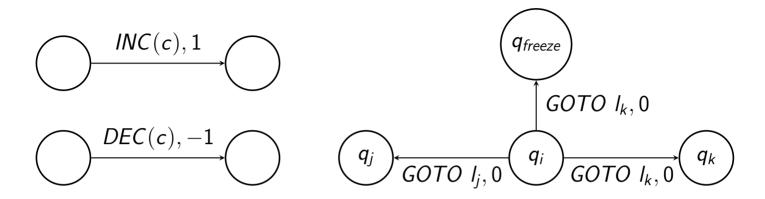


• If the counter is positive then the run in freeze will have positive value

If it's not positive then it will have value at most 0



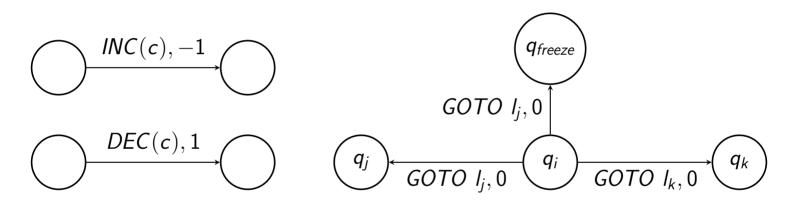
- If the counter is positive then the run in freeze will have positive value If it's not positive then it will have value at most 0
- If all  $GOTO I_k$ , 0 are correct then all runs in  $q_{freeze}$  have positive value If any is wrong then at least one has value at most 0



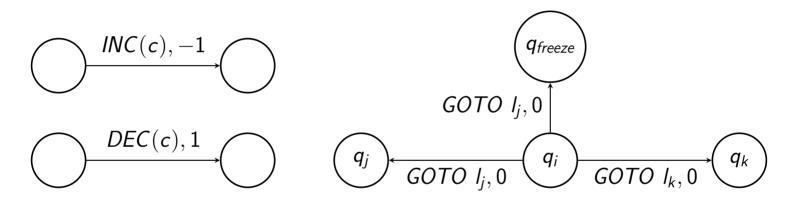
- If the counter is positive then the run in freeze will have positive value If it's not positive then it will have value at most 0
- If all  $GOTO I_k$ , 0 are correct then all runs in  $q_{freeze}$  have positive value If any is wrong then at least one has value at most 0
- Since we take min of all values this is good

### • 4., 5. Zero test checker

### • 4., 5. Zero test checker

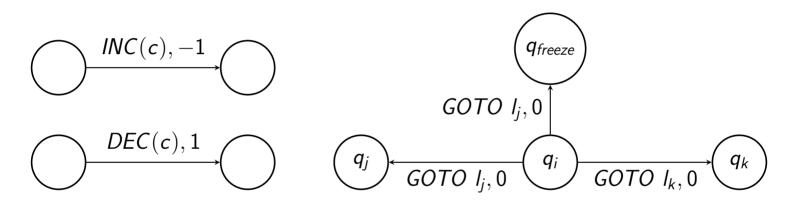


### • 4., 5. Zero test checker



- Change the initial weight of  $q_1$  to 1
- And change the weight when reading HALT to 0

### • 4., 5. Zero test checker



- Change the initial weight of  $q_1$  to 1
- And change the weight when reading HALT to 0
- ullet When any zero test is wrong there is a run in  $q_{freeze}$  with value < 1

**Theorem** (Almagor et al. 2011)

The containment problem over  $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$  is undecidable.

## **Theorem** (Almagor et al. 2011)

The containment problem over  $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$  is undecidable.

### Proof.

Recall that boundedness for  $(\mathbb{Z}_{+\infty}, \min, +, \infty, 0)$  is undecidable Hence containment too.

## **Theorem** (Almagor et al. 2011)

The containment problem over  $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$  is undecidable.

### Proof.

Recall that boundedness for  $(\mathbb{Z}_{+\infty}, \min, +, \infty, 0)$  is undecidable Hence containment too.

Given an automaton  $\mathcal{A}$  over  $(\mathbb{Z}_{+\infty}, \min, +, \infty, 0)$ 

let  $\mathcal{A}^{+c}$  be defined that we add c to all initial, final weights and transitions

## **Theorem** (Almagor et al. 2011)

The containment problem over  $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$  is undecidable.

### Proof.

Recall that boundedness for  $(\mathbb{Z}_{+\infty}, \min, +, \infty, 0)$  is undecidable Hence containment too.

Given an automaton  $\mathcal{A}$  over  $(\mathbb{Z}_{+\infty}, \min, +, \infty, 0)$ 

let  $\mathcal{A}^{+c}$  be defined that we add c to all initial, final weights and transitions

Choose c such that -c is the smallest negative value (or 0) in  ${\mathcal A}$  and  ${\mathcal B}$ 

## **Theorem** (Almagor et al. 2011)

The containment problem over  $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$  is undecidable.

### Proof.

Recall that boundedness for  $(\mathbb{Z}_{+\infty}, \min, +, \infty, 0)$  is undecidable Hence containment too.

Given an automaton  $\mathcal A$  over  $(\mathbb Z_{+\infty}, \min, +, \infty, 0)$ 

let  $\mathcal{A}^{+c}$  be defined that we add c to all initial, final weights and transitions

Choose c such that -c is the smallest negative value (or 0) in  ${\mathcal A}$  and  ${\mathcal B}$ 

And observe that  $\mathcal{A} \leqslant \mathcal{B}$  iff  $\mathcal{A}^{+c} \leqslant \mathcal{B}^{+c}$ 

### **Theorem**

The boundedness problem over  $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$  is PSPACE-complete

### **Theorem**

The boundedness problem over  $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$  is PSPACE-complete

### Proof.

Consider the problem given:  $\mathcal{A}$  and  $c \in \mathbb{N}$ 

does there exist w s.t.  $A(w) \ge c$ 

### **Theorem**

The boundedness problem over  $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$  is PSPACE-complete

### Proof.

Consider the problem given:  $\mathcal{A}$  and  $c \in \mathbb{N}$  does there exist w s.t.  $\mathcal{A}(w) \geqslant c$ 

### Lemma

If there is such a w then  $|w| \leq (c+1)^{|Q|}$ 

### **Theorem**

The boundedness problem over  $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$  is PSPACE-complete

### Proof.

Consider the problem given:  $\mathcal{A}$  and  $c \in \mathbb{N}$  does there exist w s.t.  $\mathcal{A}(w) \geqslant c$ 

### Lemma

If there is such a w then  $|w| \leq (c+1)^{|Q|}$ 

For a matrix M over  $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$  we write  $M^c$  by replacing every entry > c with c

#### **Theorem**

The boundedness problem over  $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$  is PSPACE-complete

### Proof.

Consider the problem given:  $\mathcal{A}$  and  $c \in \mathbb{N}$  does there exist w s.t.  $\mathcal{A}(w) \geqslant c$ 

### Lemma

If there is such a w then  $|w| \leq (c+1)^{|Q|}$ 

For a matrix M over  $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$  we write  $M^c$ 

by replacing every entry > c with c

Let  $w = w_1 \dots w_n$  and let  $M_i = M_{w_1} \dots M_{w_i}$ 

### **Theorem**

The boundedness problem over  $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$  is PSPACE-complete

### Proof.

Consider the problem given:  $\mathcal{A}$  and  $c \in \mathbb{N}$  does there exist w s.t.  $\mathcal{A}(w) \geqslant c$ 

### Lemma

If there is such a w then  $|w| \leq (c+1)^{|Q|}$ 

For a matrix M over  $(\mathbb{N}_{+\infty}, \min, +, \infty, 0)$  we write  $M^c$ 

by replacing every entry > c with c

Let  $w = w_1 \dots w_n$  and let  $M_i = M_{w_1} \dots M_{w_i}$ 

If  $M_i^c = M_i^c$  then we can shorten the witness

• By Lemma we can guess the witness in PSPACE

• By Lemma we can guess the witness in PSPACE

PSPACE-hardness

Recall that universality is PSPACE-complete for finite automata

By Lemma we can guess the witness in PSPACE

PSPACE-hardness

Recall that universality is PSPACE-complete for finite automata

Given a finite automaton  $\mathcal{A}$  just define a weighted automaton  $\mathcal{B}$  With all transition weights 0 and inital/final weights 0

• By Lemma we can guess the witness in PSPACE

PSPACE-hardness

Recall that universality is PSPACE-complete for finite automata

Given a finite automaton  ${\cal A}$  just define a weighted automaton  ${\cal B}$  With all transition weights 0 and inital/final weights 0

Then there exists a words w s.t.  $\mathcal{B}(w) > 0$  iff  $\mathcal{B}(w) = \infty$ So iff  $\mathcal{A}$  does not accept w

# **Concluding remarks**

• For weighted automata most problems are either undecidable, or easily decidable

### **Concluding remarks**

• For weighted automata most problems are either undecidable, or easily decidable

Two rules of a thumb

• If something is undecidable then most often it is undecidable for linear ambiguous class

Like boundedness for  $(\mathbb{Z}_{+\infty}, \min, +, \infty, 0)$ 

## **Concluding remarks**

• For weighted automata most problems are either undecidable, or easily decidable

Two rules of a thumb

• If something is undecidable then most often it is undecidable for linear ambiguous class  $\text{Like boundedness for } (\mathbb{Z}_{+\infty}, \min, +, \infty, 0)$ 

• For finitely ambiguous usually problems become decidable