Lecture 9

Equivalence of weighted automata over fields is in PTIME

Powered by BeamerikZ

 \mathcal{A} and \mathcal{B} over $(\mathbb{Q}, +, \cdot, 0, 1)$ is $\mathcal{A} = \mathcal{B}$? (or any field actually)

$$\mathcal{A}$$
 and \mathcal{B} over $(\mathbb{Q}, +, \cdot, 0, 1)$ is $\mathcal{A} = \mathcal{B}$?
(or any field actually)

Theorem (Schützenberger 1961)

Equivalence of weighted automata over fields is in PTIME

$$\mathcal{A}$$
 and \mathcal{B} over $(\mathbb{Q}, +, \cdot, 0, 1)$ is $\mathcal{A} = \mathcal{B}$?
(or any field actually)

Theorem (Schützenberger 1961)

Equivalence of weighted automata over fields is in PTIME

• This has many (theoretical) applications, for example in learning

$$\mathcal{A}$$
 and \mathcal{B} over $(\mathbb{Q}, +, \cdot, 0, 1)$ is $\mathcal{A} = \mathcal{B}$?
(or any field actually)

Theorem (Schützenberger 1961)

Equivalence of weighted automata over fields is in PTIME

- This has many (theoretical) applications, for example in learning
- I present a proof due to Nathanaël Fijalkow

$${\mathcal A}$$
 and ${\mathcal B}$ over $({\mathbb Q},+,\cdot,0,1)$ is ${\mathcal A}={\mathcal B}$?
(or any field actually)

Theorem (Schützenberger 1961)

Equivalence of weighted automata over fields is in PTIME

- This has many (theoretical) applications, for example in learning
- I present a proof due to Nathanaël Fijalkow

Proof.

Let $C = A - B = \{d, \Sigma, \{M_a\}_{a \in \Sigma}, I, F\}$

We want to know if C(w) = 0 for all words w

Recall that $C(a_1 \ldots a_n) = I^{\mathsf{T}} M_{a_1} \ldots M_{a_n} F$

Recall that
$$C(a_1 \ldots a_n) = I^T M_{a_1} \ldots M_{a_n} F$$

We define the following sequence of $X_i \subseteq \mathbb{Q}^d$

- $u \in X_0 \iff I \cdot u = 0$
- $u \in X_{k+1} \iff u \in X_k$ and $M_a \cdot u \in X_k$ for all $a \in \Sigma$

Recall that
$$C(a_1 \ldots a_n) = I^T M_{a_1} \ldots M_{a_n} F$$

We define the following sequence of $X_i \subseteq \mathbb{Q}^d$

•
$$u \in X_0 \iff I \cdot u = 0$$

• $u \in X_{k+1} \iff u \in X_k$ and $M_a \cdot u \in X_k$ for all $a \in \Sigma$

Claim

- 1. $X_0 \supseteq X_1 \supseteq X_2 \dots$
- 2. X_k is a vector space for every k

Recall that
$$C(a_1 \ldots a_n) = I^T M_{a_1} \ldots M_{a_n} F$$

We define the following sequence of $X_i \subseteq \mathbb{Q}^d$

•
$$u \in X_0 \iff I \cdot u = 0$$

• $u \in X_{k+1} \iff u \in X_k$ and $M_a \cdot u \in X_k$ for all $a \in \Sigma$

Claim

- 1. $X_0 \supseteq X_1 \supseteq X_2 \dots$
- 2. X_k is a vector space for every k

Proof. trivial

Recall that
$$C(a_1 \ldots a_n) = I^T M_{a_1} \ldots M_{a_n} F$$

We define the following sequence of $X_i \subseteq \mathbb{Q}^d$

•
$$u \in X_0 \iff I \cdot u = 0$$

• $u \in X_{k+1} \iff u \in X_k$ and $M_a \cdot u \in X_k$ for all $a \in \Sigma$

Claim

- 1. $X_0 \supseteq X_1 \supseteq X_2 \dots$
- 2. X_k is a vector space for every k

Proof. trivial

• Let $X = \bigcap_k X_k$

Lemma

- 1. If $X_{k+1} = X_k$ then $X_{k+2} = X_{k+1}$
- 2. $X = X_d = X_{d+1} = \dots$
- 3. For all k

$$F \in X_k$$
 iff $\mathcal{A}(w) = 0$ for all $w \in \Sigma^{\leqslant k}$

Lemma

- 1. If $X_{k+1} = X_k$ then $X_{k+2} = X_{k+1}$
- 2. $X = X_d = X_{d+1} = \dots$
- 3. For all k

$$F \in X_k$$
 iff $\mathcal{A}(w) = 0$ for all $w \in \Sigma^{\leqslant k}$

• First, why Claim and Lemma imply the ptime algorithm?

Lemma

- 1. If $X_{k+1} = X_k$ then $X_{k+2} = X_{k+1}$
- 2. $X = X_d = X_{d+1} = \dots$
- 3. For all k

$$F \in X_k$$
 iff $\mathcal{A}(w) = 0$ for all $w \in \Sigma^{\leqslant k}$

• First, why Claim and Lemma imply the ptime algorithm?

Iteratively compute the basis of X_0, X_1, \ldots until it stabilises (after at most *d* steps)

Lemma

- 1. If $X_{k+1} = X_k$ then $X_{k+2} = X_{k+1}$
- 2. $X = X_d = X_{d+1} = \dots$
- 3. For all k

$$F \in X_k$$
 iff $\mathcal{A}(w) = 0$ for all $w \in \Sigma^{\leqslant k}$

• First, why Claim and Lemma imply the ptime algorithm?

Iteratively compute the basis of X_0, X_1, \ldots until it stabilises (after at most *d* steps)

Finally, check if $F \in X$

Lemma

- 1. If $X_{k+1} = X_k$ then $X_{k+2} = X_{k+1}$
- 2. $X = X_d = X_{d+1} = \dots$
- 3. For all k

$$F \in X_k$$
 iff $\mathcal{A}(w) = 0$ for all $w \in \Sigma^{\leqslant k}$

• First, why Claim and Lemma imply the ptime algorithm?

Iteratively compute the basis of X_0, X_1, \ldots until it stabilises (after at most *d* steps)

```
Finally, check if F \in X
```

How to iteratively compute the basis?

• Given a matrix M and a basis of a vector space Vcompute a basis of $\{u \mid M \cdot u \in V\}$

• Given a matrix M and a basis of a vector space Vcompute a basis of $\{u \mid M \cdot u \in V\}$

This is enough because

$$X_{k+1} = X_k \cap \bigcap_{a \in \Sigma} \{ u \mid M_a \cdot u \in X_k \}$$

• Given a matrix M and a basis of a vector space Vcompute a basis of $\{u \mid M \cdot u \in V\}$

This is enough because

$$X_{k+1} = X_k \cap \bigcap_{a \in \Sigma} \{ u \mid M_a \cdot u \in X_k \}$$

To compute this let V' = V ∩ im(M)
 We need to compute M's preimage of V'

• Given a matrix M and a basis of a vector space Vcompute a basis of $\{u \mid M \cdot u \in V\}$

This is enough because

$$X_{k+1} = X_k \cap \bigcap_{a \in \Sigma} \{ u \mid M_a \cdot u \in X_k \}$$

To compute this let V' = V ∩ im(M)
We need to compute M's preimage of V'
Let M' be M rewritten so that the columns of M have the basis of V'
From this you can extract the basis

• Given a matrix M and a basis of a vector space Vcompute a basis of $\{u \mid M \cdot u \in V\}$

This is enough because

$$X_{k+1} = X_k \cap \bigcap_{a \in \Sigma} \{ u \mid M_a \cdot u \in X_k \}$$

- To compute this let V' = V ∩ im(M)
 We need to compute M's preimage of V'
 Let M' be M rewritten so that the columns of M have the basis of V'
 From this you can extract the basis
- It remains to prove the Lemma

 $u \in X_0 \iff I \cdot u = 0$ $u \in X_{k+1} \iff u \in X_k \text{ and } M_a \cdot u \in X_k \text{ for all } a \in \Sigma$

1. If $X_{k+1} = X_k$ then $X_{k+2} = X_{k+1}$

$$u \in X_0 \iff I \cdot u = 0$$

 $u \in X_{k+1} \iff u \in X_k$ and $M_a \cdot u \in X_k$ for all $a \in \Sigma$

1. If
$$X_{k+1} = X_k$$
 then $X_{k+2} = X_{k+1}$

 $X_{k+2} \subseteq X_{k+1}$ we already know

$$u \in X_0 \iff I \cdot u = 0$$

 $u \in X_{k+1} \iff u \in X_k$ and $M_a \cdot u \in X_k$ for all $a \in \Sigma$

1. If
$$X_{k+1} = X_k$$
 then $X_{k+2} = X_{k+1}$

 $X_{k+2} \subseteq X_{k+1}$ we already know

For $X_{k+1} \subseteq X_{k+2}$ let $u \in X_{k+1}$ We need to show that $u \in X_{k+2}$ so $M_a \cdot u \in X_{k+1}$ for all $a \in \Sigma$

$$u \in X_0 \iff I \cdot u = 0$$

 $u \in X_{k+1} \iff u \in X_k$ and $M_a \cdot u \in X_k$ for all $a \in \Sigma$

1. If
$$X_{k+1} = X_k$$
 then $X_{k+2} = X_{k+1}$

 $X_{k+2} \subseteq X_{k+1}$ we already know

For $X_{k+1} \subseteq X_{k+2}$ let $u \in X_{k+1}$ We need to show that $u \in X_{k+2}$ so $M_a \cdot u \in X_{k+1}$ for all $a \in \Sigma$

Since
$$u \in X_{k+1}$$
 then $M_a \cdot u \in X_k$ for all a
But since $X_{k+1} = X_k$ we get $M_a \cdot u \in X_{k+1}$

2.
$$X = X_d = X_{d+1} = \dots$$

2.
$$X = X_d = X_{d+1} = \dots$$

This is trivial because X_k are vector spaces $dim(X_0) \leq d$ Previous property

3. For all k

$$F \in X_k$$
 iff $\mathcal{A}(w) = 0$ for all $w \in \Sigma^{\leqslant k}$

3. For all k

$$F \in X_k$$
 iff $\mathcal{A}(w) = 0$ for all $w \in \Sigma^{\leqslant k}$

• We prove by induction that for all $w = a_1 \dots a_k \in \Sigma^{\leqslant k}$

$$u \in X_k \iff I \cdot M_w \cdot u = 0$$

3. For all k

$$F \in X_k$$
 iff $\mathcal{A}(w) = 0$ for all $w \in \Sigma^{\leqslant k}$

• We prove by induction that for all $w = a_1 \dots a_k \in \Sigma^{\leqslant k}$

$$u \in X_k \iff I \cdot M_w \cdot u = 0$$

• Base case k = 0 is by definition of X_0

3. For all k

$$F \in X_k$$
 iff $\mathcal{A}(w) = 0$ for all $w \in \Sigma^{\leqslant k}$

• We prove by induction that for all $w = a_1 \dots a_k \in \Sigma^{\leqslant k}$

$$u \in X_k \iff I \cdot M_w \cdot u = 0$$

- Base case k = 0 is by definition of X_0
- Induction step: we only need to prove for words in Σ^{k+1}
 let w' = wa, where |w| = k and a ∈ Σ and let u ∈ X_{k+1}
 then M_a · u ∈ X_k

3. For all k

$$F \in X_k$$
 iff $\mathcal{A}(w) = 0$ for all $w \in \Sigma^{\leqslant k}$

• We prove by induction that for all $w = a_1 \dots a_k \in \Sigma^{\leqslant k}$

$$u \in X_k \iff I \cdot M_w \cdot u = 0$$

- Base case k = 0 is by definition of X_0
- Induction step: we only need to prove for words in Σ^{k+1}
 let w' = wa, where |w| = k and a ∈ Σ and let u ∈ X_{k+1}
 then M_a · u ∈ X_k

So by induction assumption $I \cdot M_w \cdot M_a \cdot u = 0$ Done because $M_w \cdot M_a = M_{w'}$