# Tutorials 2

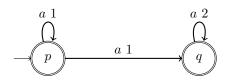
Filip Mazowiecki, Toghrul Karimov

May 7, 2020

A deterministic weighted automaton is a weighted automaton such that the underlying finite automaton is deterministic. That is: there is one initial state, and for every state p and letter a there is exactly one transition (p, a, s, q). We say that two automata  $\mathcal{A}$  and  $\mathcal{B}$  are equivalent if  $[\![\mathcal{A}]\!](w) = [\![\mathcal{B}]\!](w)$  for every word w.

#### 1 Exercise

Consider the following automaton  $\mathcal{A}$  over  $(\mathbb{Q}, +, \cdot, 0, 1)$ . The alphabet has only one letter  $\Sigma = \{a\}$ . The initial values are I(p) = 1 and I(q) = 0 and the final values are F(p) = F(q) = 1.



What is the value  $\llbracket \mathcal{A} \rrbracket (a^n)$ ? Define a deterministic automaton  $\mathcal{B}$  over  $(\mathbb{Q}, +, \cdot, 0, 1)$ , which is equivalent to  $\mathcal{A}$ .

## 2 Exercise

Show (and prove) an example of a weighted automaton  $\mathcal{A}$  over  $(\mathbb{Q}, +, \cdot, 0, 1)$  such that there is no deterministic weighted automaton  $\mathcal{B}$  over  $(\mathbb{Q}, +, \cdot, 0, 1)$  which is equivalent to  $\mathcal{A}$ .

### 3 Exercise

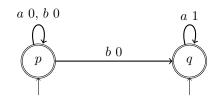
Consider the example automaton  $\mathcal{A}$  over the semiring  $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$  where the initial and final values of both states are 0.  $\mathcal{A}$  computes the maximum of number of a's and number of b's.



Notice that  $\mathcal{A}$  is nondeterministic because there are two initial states. Prove that there is no deterministic weighted automaton  $\mathcal{B}$  over  $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$ , which is equivalent to  $\mathcal{A}$ .

#### 4 Exercise

Let  $\Sigma = \{a, b\}$ . Consider the weighted automaton  $\mathcal{A}$  over  $(\mathbb{N}_{-\infty}, \max, +, -\infty, 0)$  below. The initial function is I(p) = I(q) = 0 and the final function is F(p) = F(q) = 0.



Define a weighted automaton over the semiring  $(\mathbb{Q}, +, \cdot, 0, 1)$  such that  $\llbracket \mathcal{A} \rrbracket(w) = \llbracket \mathcal{B} \rrbracket(w)$ .