Tutorials 3

Filip Mazowiecki, Toghrul Karimov

May 16, 2020

1 Exercise

Recall the three classes of sequences from Lecture 2:

- 1. Homogenous linear recurrence sequences.
- 2. Nonhomogenous linear recurrence sequences.
- 3. Sequences defined with a system of linear sequences.

We proved that over commutative rings these classes are equivalent and that for any semiring $(1) \subseteq (2) \subseteq (3)$. Show that over the semiring $(\mathbb{N}, +, \cdot, 0, 1)$ the inclusions are strict: $(1) \subsetneq (2) \subsetneq (3)$. That is, find a sequence in (3) that is not in (2) and a sequence in (2) that is not in (1).

2 Exercise

Prove that for any integers $n \ge 0$ and $k \ge 1$

$$\sum_{i=0}^{k+1} \binom{k+1}{i} (-1)^i \cdot (n+k+1-i)^k = 0.$$

Hint. It has something to do with Lecture 2.

3 Exercise

We denote sequences over a semiring $\mathbb{S}(\oplus, \odot, \mathbb{O}, \mathbb{1})$ by $\langle u_n \rangle_{n \in \mathbb{N}} = u_0, u_1, \ldots$ where $u_n \in \mathbb{S}$.

Consider the class C of sequences definable by systems of linear sequences over some semiring $\mathbb{S}(\oplus, \odot, 0, \mathbb{1})$. Prove that if $\langle u_n \rangle_{n \in \mathbb{N}}, \langle v_n \rangle_{n \in \mathbb{N}} \in C$ then their pointwise product $\langle u_n \odot v_n \rangle_{n \in \mathbb{N}}$ and pointwise sum $\langle u_n \oplus v_n \rangle_{n \in \mathbb{N}}$ are also in C.