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Abstract. Petri nets are an established model of concurrency. A Petri
net is terminating if for every initial marking there is a uniform bound
on the length of all possible runs. Recent work on the termination of
Petri nets suggests that, in general, practical models should terminate
fast, i.e. in polynomial time. In this paper we focus on the termination
of workflow nets, an established variant of Petri nets used for modelling
business processes. We partially confirm the intuition on fast termination
by showing a dichotomy: workflow nets are either non-terminating or
they terminate in linear time.
The central problem for workflow nets is to verify a correctness notion
called soundness. In this paper we are interested in generalised soundness
which, unlike other variants of soundness, preserves desirable properties
like composition. We prove that verifying generalised soundness is coNP-
complete for terminating workflow nets.
In general the problem is PSPACE-complete, thus intractable. We uti-
lize insights from the coNP upper bound to implement a procedure for
generalised soundness using MILP solvers. Our novel approach is a semi-
procedure in general, but is complete on the rich class of terminating
workflow nets, which contains around 90% of benchmarks in a widely-
used benchmark suite. The previous state-of-the-art approach for the
problem is a different semi-procedure which is complete on the incompa-
rable class of so-called free-choice workflow nets, thus our implementation
improves on and complements the state-of-the-art.
Lastly, we analyse a variant of termination time that allows parallelism.
This is a natural extension, as workflow nets are a concurrent model by
design, but the prior termination time analysis assumes sequential be-
havior of the workflow net. The sequential and parallel termination times
can be seen as upper and lower bounds on the time a process represented
as a workflow net needs to be executed. In our experimental section we
show that on some benchmarks the two bounds differ significantly, which
agrees with the intuition that parallelism is inherent to workflow nets.
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1 Introduction

Petri nets are a popular formalism to model problem in software verification [23],
business processes [1] and many more (see [44] for a survey). One of the funda-
mental problems for such models is the termination problem, i.e. whether the
lengths of all runs are universally bounded. There are two natural variants of this
problem. First, if the initial configuration is fixed then the problem is effectively
equivalent to the boundedness problem, known to be EXPSPACE-complete for
Petri nets [37,43]. Second, if termination must hold for all initial configurations
the problem known to be in polynomial time [31], and such nets are known as
structurally terminating. In this paper we are interested in the latter variant.

Termination time is usually studied for vector addition system with states
(VASS), an extension of Petri nets that allows the use of control states. In
particular, the aforementioned EXPSPACE and polynomial time bounds work
for VASS. In 2018, a deeper study of the termination problem for VASS was
initiated [13]. This study concerns the asymptotics of the function f(n) bounding
the length of runs, where n bounds the size of the initial configuration. The focus
is particularly on classes where f(n) is a polynomial function, suggesting that
such classes are more relevant for practical applications. This line of work was
later continued for variants of VASS involving probabilities [12] and games [32].

For VASS the function f(n) can asymptotically be as big as Fi(n) in the
Grzegorczyk hierarchy for any finite i (recall that F3(n) is nonelementary and
Fω(n) is Ackermann) [45,36]. It was known that for terminating Petri nets many
problems are considerably simpler [42]. However, to the best of our knowledge,
the asymptotic behaviour of f(n) was not studied for Petri nets.

Our contributions. In this paper we focus on workflow nets, a class of Petri
nets widely used to model business processes [1]. Our first result is the following
dichotomy: any workflow net is either non-terminating or f(n) is linear. This
confirms the intuition about fast termination of practical models [13]. In our
proof, we follow the intuition of applying linear algebra from [42] and rely on
recent results on workflow nets [10]. We further show that the optimal constant
aN such that f(n) = aN · n can be computed in polynomial time. The core of
this computation relies on a reduction to continuous Petri nets [20], a well known
relaxation of Petri nets. Then we can apply standard tools from the theory of
continuous Petri nets, where many problems are in polynomial time [20,7].

For workflow nets, the central decision problems are related to soundness.
There are many variants of this problem (see [2] for a survey). For example
k-soundness intuitively verifies that k started processes eventually properly
terminate. We are interested in generalised soundness, which verifies whether
k-soundness holds for all k [27,28,26]. The exact complexity of most popu-
lar soundness problems was established only recently in 2022 [10]. Generalised
soundness is surprisingly PSPACE-complete. Other variants, like k-soundness,
are EXPSPACE-complete, thus computationally harder, despite having a seem-
ingly less complex definition. Moreover, unlike k-soundness and other variants,
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generalised soundness preserves desirable properties like composition [27]. Build-
ing on our first result, i.e. the dichotomy between non-terminating and linearly
terminating workflow nets, our second result is that generalised soundness is
coNP-complete for terminating workflow nets.

Finally, we observe that the asymptotics of f(n) are defined with the implicit
assumption that transitions are fired sequentially. Since workflow nets are models
for parallel executions it is natural to expect that runs would also be performed
in parallel. Our definition of parallel executions is inspired by similar concepts
for time Petri nets, and can be seen as a particular case [5]. We propose a
definition of the optimal running time of runs exploiting parallelism and denote
this time g(n), where n bounds the size of the initial marking. We show that the
asymptotic behaviour of g(n), similar to f(n), can be computed in polynomial
time, for workflow nets with mild assumptions. Together, the two functions f(n)
and g(n) can be seen as (pessimistic) upper bound and (optimistic) lower bound
on the time needed for the workflow net to terminate.

Experiments. Based on our insights, we implement several procedures for prob-
lems related to termination in workflow nets. Namely, we implement our algo-
rithms for checking termination, for deciding generalised soundness of workflow
nets and for computing the asymptotic behaviour of f(n). We additionally imple-
ment procedures to compute f(k), g(k) and decide k-soundness for terminating
workflow nets. To demonstrate the efficacy of our procedures, we test our im-
plementation on a popular and well-studied benchmark suite of 1382 workflow
nets, originally introduced in [19]. It turns out that the vast majority of in-
stances (roughly 90%) is terminating, thus the class of terminating workflow
nets seems highly relevant in practice. Further, we positively evaluate our al-
gorithm for generalised soundness against a recently proposed state-of-art ap-
proach [11] which semi-decides the property in general, and is further exact on
the class of free-choice workflow nets [3]. Interestingly, our novel approach for
generalised soundness is also a semi-procedure in general, but precise on termi-
nating workflow nets. The approach from [11] is implemented as an ∃∀-formula
from FO(Q, <,+), while our approach manages to avoid any quantifier alter-
nations. It turns out that our approach is faster on over 95% of benchmark
instances, and thus significantly improves upon the state-of-art. The mean anal-
ysis time for our approach is just 12.8ms, while it is about 2s for the previous
state-of-the-art. In addition, the classes of free-choice and terminating workflow
nets are incomparable, thus our approach complements the state-of-the-art.

Related work. For general Petri nets and VASS the most well-known problem
is reachability, recently shown to be Ackermann-complete [35,15,34]. Despite its
high complexity, there are tools for the problem [17,47], including some based on
integer and continuous relaxations [9,6,22]. Reachability was also studied in the
context of terminating models. In particular, it is PSPACE-complete for struc-
turally terminating Petri nets [42] and EXPSPACE-complete for polynomially
terminating VASS [33].
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Most algorithms for soundness are based on reductions to reachability [1], this
is the case for the first algorithms for generalised soundness [28,26]. However,
such reductions only imply Ackermannian upper bounds on the problem, while
a direct study yielded elementary complexities [10].

A different class of approaches for soundness relies on reduction rules, which
can be applied iteratively to reduce the size of a net while exactly preserving
soundness [41,4]. These approaches are not precise in general, but can be for
subclasses, e.g. for live and bounded free-choice workflow nets [16]. We use a
certain set of reduction rules [14] for generalised soundness in our experimental
evaluation.

There exist many established tools and frameworks for the analysis of work-
flow nets, for example Woflan [46], WoPeD [21], and ProM [18]. However, when
it comes to soundness problems, these tools typically focus on k-soundness, with
a particular focus on k = 1 (except for the discussed tool in [11]).

Organisation. In Section 2 we define the models, problems and basic notation.
In Section 3 we prove the dichotomy between non-terminating and linear work-
flow nets. Then, we show how to compute the linear constants for terminating
workflow nets in Section 4. Building on the dichotomy we show that generalised
soudness is coNP-complete in Section 5. In Section 6 we define and compute a
variant of termination time that takes into account parallelism. We present our
experimental results in Section 7. Most proofs can be found in the appendix.

2 Preliminaries

We write N,N>0,Z,Q and Q≥0 for the naturals (including 0), the naturals with-
out 0, the integers, the rationals, and the nonnegative rationals, respectively.

Let N be a set of numbers, e.g. N = N. For d, d1, d2 ∈ N>0 we write Nd

for the set of vectors with elements from N in dimension d. Similarly, Nd1×d2

is the set of matrices with d1 rows and d2 columns and elements from N . We
use bold font for vectors and matrices. For a ∈ Q and d ∈ N>0, we write
ad := (a, a, . . . , a) ∈ Qd (or a if d is clear from context). In particular 0d = 0 is
the zero vector.

Sometimes it is more convenient to have vectors with coordinates in a finite
set. Thus, for a finite set S, we write NS , ZS , and QS for the set of vectors over
naturals, integers and rationals. Given a vector v and an element s ∈ S, we write
v(s) for the value v assigns to s.

Given v,w ∈ QS , we write v ≤ w if v(s) ≤ w(s) for all s ∈ S, and v < w
if v ≤ w and v(s) < w(s) for some s ∈ S. The size of S, denoted |S|, is the
number of elements in S. We define the norm of a vector ∥v∥ := maxs∈S |v(s)|,
and the norm of a matrix A ∈ Qm×n as ∥A∥ := max1≤j≤m,1≤i≤n|A(i, j)|. For a
set S ∈ Qd, we denote by S ∈ Rd the closure of S in the euclidean space.
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2.1 (Integer) Linear Programs

Let n,m ∈ N>0, A ∈ Zm×n, and b ∈ Zm. We say that G := Ax ≤ b is a system
of linear inequalities with m inequalities and n variables. The norm of a system
G is defined as ∥G∥ := ∥A∥+∥b∥+m+n. An (m×n)-ILP, short for integer linear
program, is a system of linear inequalities with m inequalities and n variables,
where we are interested in the integer solutions. An (m×n)-LP is such a system
where we are interested in the rational solutions. We use the term MILP, short
for mixed integer linear program, for a system where some variables are allowed
to take on rational values, while others are restricted to integer values.

We allow syntactic sugar in ILPs and LPs, such as allowing constraints x ≥ y,
x = y, x < y (in the case of ILPs). Sometimes we are interested in finding optimal
solutions. This means we have a objective function, formally a linear function
on the variables of the system, and look for a solution that either maximizes or
minimizes the value of that function. For LPs, finding an optimal solution can
be done in polynomial time, while this is NP-complete for ILPs and MILPs.

2.2 Petri nets

A Petri net N is a triple (P, T, F ), where P is a finite set of places; T is a finite set
of transitions such that T ∩P = ∅; and F : ((P ×T )∪ (T ×P )) → N is a function
describing its arcs. A marking is a vector m ∈ NP . We say that m(p) is the
number of tokens in place p ∈ P and p is marked if m(p) > 0. To write markings,
we list only non-zero token amounts. For example, m = {p1 : 2, p2 : 1} is the
marking m with m(p1) = 2,m(p2) = 1 and m(p) = 0 for all p ∈ P \ {p1, p2}.

Let t ∈ T . We define the vector •t ∈ NP by •t(p) := F (p, t) for p ∈ P .
Similarly, the vector t• ∈ NP is defined by t•(p) := F (t, p) for p ∈ P . We write
the effect of t as ∆(t) := t• − •t. A transition t is enabled in a marking m if
m ≥ •t. If t is enabled in the marking m, we can fire it, which leads to the
marking m′ := m + ∆(t), which we denote m −→t m′. We write m −→ m′ if
there exists some t ∈ T such that m −→t m′.

A sequence of transitions π = t1t2 . . . tn is called a run. We denote the length
of π as |π| := n. A run π is enabled in a marking m iff m −→t1 m1 −→t2

m2 −→t3 . . .mn−1 −→tn m′ for some markings m1,m2, . . . ,m
′ ∈ NP . The set of

all runs is denoted RunsmN , i.e. π ∈ RunsmN if π is enabled in m. The effect of
π is ∆(π) :=

∑
i∈[1..n] ∆(ti). Firing π from m leads to a marking m′, denoted

m −→π m′, iff m ∈ RunsmN and m′ = m+∆(π). We denote by −→∗ the reflexive,
transitive closure of −→. Given two runs π = t1t2 . . . tn and π′ = t′1t

′
2 . . . t

′
n′ we

denote ππ′ := t1t2 . . . tnt
′
1t

′
2 . . . t

′
n′ .

The size of a Petri net is defined as |N | = |P |+ |T |+ |F |. We define the norm
of N as ∥N∥ := ∥F∥+ 1, where we view F as a vector in N(P×T )∪(T×P ).

We also consider several variants of the firing semantics of Petri nets which we
will need throughout the paper. In the integer semantics, we consider markings
over ZP , and transitions can be fired without being enabled. To denote the firing
and reachability relations, we use the notations −→Z and −→∗

Z. In the continuous
semantics [20], we consider markings over QP

≥0. Given t ∈ T and a scaling factor
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Fig. 1. A Petri net with places p1, p2, p3, p4 and transitions t1, t2. Marking
{p1 : 2, p4 : 1} is drawn. No transition is enabled.

β ∈ Q≥0
3, the effect of firing βt is ∆(βt) := β ·∆(t). Further, βt is enabled in

a marking m iff β · •t ≤ m. We use −→Q≥0
for the continuous semantics, that

is, m −→βt
Q≥0

m′ means βt is enabled in m and m′ = m+∆(βt). A continuous

run π is a sequence of factors and transitions β1t1β2t2 . . . βntn. Enabledness
and firing are extended to continuous runs: m −→π

Q≥0
m′ holds iff there exist

m1, . . . ,mn−1 such that m −→β1t1
Q≥0

m1 −→β2t2
Q≥0

· · ·mn−1 −→βntn
Q≥0

m′. The length of

π is |π|c :=
∑n

i=1 βi. Given α ∈ Q≥0 and a run π = β1t1β2t2 . . . βntn we write
απ to denote the run (αβ1)t1(αβ2)t2 . . . (αβn)tn. We introduce a lemma stating
that continuous runs can be rescaled.

Lemma 1 (Lemma 12(1) in [20]). Let α ∈ Q≥0. Then m −→π
Q≥0

m′ if and

only if αm −→απ
Q≥0

αm′.

Each run under normal semantics or integer semantics is equivalent to a
continuous run i.e. t1t2 . . . tn ≈ 1t11t2 . . . 1t2. Given π ∈ RunsmN (i.e. a standard
run) we define απ = απc where πc ≈ π is a continuous run. If πc = β1t1 . . . βntn
with βi ∈ N for all i ∈ {1, . . . , n} then we also call π a (standard) run, i.e. the
run where every transition ti is repeated βi times.

We define the set of continuous runs enabled from m ∈ NP in N as CRunsmN .
The Parikh image of a continuous run π = β1t1β2t2 . . . βntn is the vector Rπ ∈
QT such that Rπ(t) =

∑
i|ti=t βi. For a (standard) run π we define its Parikh

image Rπ := Rπc where πc ≈ π. Given a vector R ∈ QT
≥0, we define ∆(R) :=∑

t∈T R(t) · ∆(t), •R :=
∑

t∈T
•t · R(t), R• :=

∑
t∈T t• · R(t). Note that R

is essentially a run without imposing an order on the transitions. For ease of
notation, we define ∆(T ) as a matrix with columns indexed by T and rows
indexed by P , where ∆(T )(t)(p) := ∆(t)(p). Then ∆(R) = ∆(T )R.

Example 1. Consider the Petri net drawn in Figure 1. Marking m :=
{p1 : 2, p4 : 1} enables no transitions. However, we havem −→t1t2

Z {p3 : 2}. We also
have m −→t2t1

Z {p3 : 2}, since the transition order does not matter under the in-
teger semantics. Thus, when we take R = {t1 : 1, t2 : 1}, we have m −→R

Z {p3 : 2}.
Under the continuous semantics we can fire 1/2t1, which is impossible under

the normal semantics. For example, we have m −→1/2t1
Q≥0

{p1 : 1, p2 : 1/2} −→1/2t2
Q≥0

{p1 : 1, p3 : 1, p4 : 1} −→1/3t1
Q≥0

{p1 : 1/3, p2 : 1/3, p3 : 1, p4 : 2/3}.
3 Sometimes scaling factors are defined to be at most 1. The definitions are equivalent:
Scaling larger than 1 can be done by firing the same transition multiple times.
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2.3 Workflow Nets

A workflow net is a Petri net N such that:

– There exists an initial place i with F (t, i) = 0 for all t ∈ T (i.e. no tokens
can be added to i);

– there exists a final place f with F (f, t) = 0 for all t ∈ T (i.e. no tokens can
be removed from f); and

– in the graph (V,E) with V = P ∪ T and (u, v) ∈ E iff F (u, v) ̸= 0, each
v ∈ V lies on at least one path from i to f.

We say that N is k-sound iff for all m, {i : k} −→∗ m implies m −→∗ {f : k}.
Further, we say N is generalised sound iff it is k-sound for all k.

A place p ∈ P is nonredundant if {i : k} −→∗ m for some k ∈ N and mark-
ing m with m(p) > 0, and redundant otherwise. We accordingly say that N is
nonredundant if all p ∈ P are nonredundant, otherwise N is redundant. A redun-
dant workflow net can be made nonredundant by removing each redundant place
p ∈ P and all transitions such that •t(p) > 0 or t•(p) > 0. Note that this does
not impact behaviour of the workflow, as the discarded transitions could not be
fired in the original net. A polynomial-time saturation procedure can identify
redundant places, see [28, Thm. 8, Def. 10, Sect. 3.2] and [10, Prop. 5.2].

If N is a workflow net, we write RunskN for the set of runs that are enabled
from the marking {i : k}, and CRunskN for the same for continuous runs. Lemma 1
implies that if π ∈ RunskN then 1

kπ ∈ CRuns1N . The converse does not need to
hold as the rescaled continuous run need not have natural coefficients.

Example 2. The Petri net in Figure 1 can be seen as a workflow net with initial
place p1 and final place p3. The workflow is not k-sound for any k. Further, the
net is redundant: {i : k} is a deadlock for every k, so places p2, p3 and p4 are
redundant. ◁

2.4 Termination Complexity

Let N be a workflow net. Let us define as MaxTimeN (k) the supremum of
lengths among runs enabled in {i : k}, that is, MaxTimeN (k) = sup{|π| | π ∈
RunskN }. We say that N is terminating if MaxTimeN (k) ̸= ∞ for all k ∈ N>0,
otherwise it is non-terminating.

We say that N has polynomial termination time if there exist d ∈ N, ℓ ∈ R
such that for all k,

MaxTimeN (k) ≤ ℓ · kd. (1)

Further N has linear termination time if Eq. (1) holds with d = 1. Even more
fine-grained, N has a-linear termination time if Eq. (1) holds for ℓ = a and
d = 1. Note that any net with a-linear termination time also has (a + b)-linear
termination time for all b ≥ 0. For ease of notation, we call workflow nets that
have linear termination time linear workflow nets, and similarly for a-linear.

We define aN := inf{a ∈ R | N is a-linear}. Note that in particular N is
aN -linear (because the inequality in Eq. (1) is not strict) and that aN is the
smallest constant with this property.
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Fig. 2. Two workflow nets with the initial marking {i : 1}. The workflow net on the
left-hand side is terminating in linear time. The workflow net on the right-hand side is
the same as the one on the left, but with one extra transition t4. It is non-terminating.

Example 3. The net on the left-hand side of Figure 2 is terminating. For example,
from {i : 2} all runs have length at most 3. It is easy to see that from {i : k} all

runs have length at most 3
2k (e.g. the run (t1t2t3)

⌊ k
2 ⌋). The net has aN = 3/2.

The net on the right-hand side is non-terminating. From {i : 2}, all runs of
the form t1t2t

∗
4 are enabled. Note that while the net is non-terminating, all runs

from {i : 1} have length at most 1 (because t3 and t4 are never enabled). ◁

Our definition of termination time is particular to workflow nets, as there it
is natural to have only i marked initially. It differs from the original definition of
termination complexity in [13]. In [13] VASS are considered instead of Petri nets,
and the initial marking is arbitrary. The termination complexity is measured in
the size of the encoding of m. The core difference is that in [13] it is possible
to have a fixed number of tokens in some places, but arbitrarily many tokens
in other places. In Section 3 we show an example that highlights the difference
between the two notions. Our definition is a more natural fit for workflow nets,
and will allow us to reason about soundness. Indeed, our particular definition of
termination time allows us to obtain the coNP-completeness result of generalised
soundness for linear workflow nets in Section 5.

3 A Dichotomy of Termination Time in Workflow Nets

Let us exhibit behaviour in Petri nets that cannot occur in workflow nets.
Consider the net drawn in black in Figure 3 and a family of initial markings
{{p1 : 1, s1 : 1, b : n} | n ∈ N}. From the marking {p1 : 1, s1 : 1, b : n}, all
runs have finite length, yet a run has length exponential in n. From the mark-
ing {p1 : k, s1 : 1, b : n}, the sequence (t1t2)

kt4(t3)
2kt5 results in the marking

{p1 : 2k, s1 : 1, b : n − 1}. Thus, following this pattern n times leads from
{p1 : 1, s1 : 1, b : n} to {p1 : 2n, s1 : 1}. This behaviour crucially requires us to
keep a single token in s1, while having n tokens in b.
We can transform the net into a workflow net, as demonstrated by the colored
part of Figure 3. However, observe that then

{i : 2} −→titit4 {p1 : 2, s1 : 1, s2 : 1, b : 1} −→t1t2t3 {p1 : 2, s1 : 1, s2 : 1, b : 1, p3 : 1}.
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p1 t1 p2 t2 p3 t3

s1 s2

n b

t4

t5

ti

i

tf

f

Fig. 3. In black: A Petri net N adapted from [29, Lemma 2.8]. It enables a run with
length exponential in n from marking {p1 : 1, s1 : 1, b : n}. In color: Additional places
and transitions, which make N a workflow net.

Note that the sequence t1t2t3 strictly increased the marking. It can thus be fired
arbitrarily many times, and the workflow net is non-terminating.

It turns out that, contrary to standard Petri nets, there exist no workflow
nets with exponential termination time.4 Instead, there is a dichotomy between
non-termination and linear termination time.

Theorem 1. Every workflow net N is either non-terminating or linear. More-

over, MaxTimeN (k) ≤ ak for some a ≤ ∥N∥poly(|N |)
.

As explained in Section 2.3 we can assume that N is nonredundant, i.e. for
all p ∈ P there exists k ∈ N such that {i : k} −→∗ m with m(p) > 0. The first
important ingredient is the following lemma.

Lemma 2. Let N = (P, T, F ) be a nonredundant workflow net. Then N is non-
terminating iff there exists a nonzero R ∈ NT such that ∆(R) ≥ 0.

Proof (sketch). The first implication follows from the fact that if we start from
a big initial marking, then it is possible to fill every place with arbitrarily many
tokens. In such a configuration any short run is enabled, so if there is a run with
non-negative effect then it is further possible to repeat it infinitely many times.
For the other implication we reason as follows. If there is an infinite run then
by Dickson’s lemma there are m,m′ ∈ NP such that for some k, it holds that
{i : k} −→π m −→ρ m′ and m′ ≥ m. But then ∆(Rρ) = m′ −m ≥ 0. ⊓⊔

We define ILPN with a |T | dimensional vector of variables x as the following
system of inequalities: x ≥ 0 and ∆(T )x ≥ 0−{i : ∞}.5 The next lemma follows
immediately from the definition of −→Z.

4 This is caused by the choice of the family of initial configurations. Fixing the number
of initial tokens in some places can be simulated by control states in the VASS model.

5 This ∞ is syntactic sugar to omit the inequality for the place i. Formally ∆(T ) and
x should be projected to ignore i.
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Lemma 3. [Adapted from Claim 5.7 in [10]] For every k ∈ N, m ∈ NP , and a
run π, it holds that {i : k} −→π

Z m iff Rπ is a solution to ILPN with the additional

constraint
∑|T |

i=1 ∆(ti)(i) ·Rπ(ti) ≥ −k.

Proof (Sketch for Theorem 1). Because of Lemma 3 the Parikh image of every
run (in

⋃
k∈N RunskN ) is a solution R ∈ NT of ∆(T )R ≥ −{i : ∞}. So, we

consider a set of solutions of the system of inequalities ∆(T )R ≥ −{i : ∞}. It
is a linear set, so the sum of two solutions is again a solution and any solution
can be written as a sum of small solutions with norm smaller than some c ∈ N.
For such small solutions, the length of any corresponding run is at most |T | · c.
Now observe that if the workflow is terminating then there is no R ∈ NT such
that ∆(T )R ≥ 0, because of Lemma 2. But it holds that ∆(R)(i) ≤ −1 for any
solution R, so in particular for all small solutions. Let us take a run π ∈ RunskN .

We decompose Rπ as a finite sum
∑ℓ

i Ri where Ri are from the set of small

solutions. We have −k ≤ ∆(Ri)(i) =
∑ℓ

i ∆(Ri)(i) ≤
∑ℓ

i −1 = −ℓ. Recall that
the norm of small solutions is bounded by c. It follows that the length of the run
π is bounded by ℓ · |T | · c ≤ k · |T | · c. So the workflow is |T | · c-linear.

4 Refining Termination Time

Recall that aN is the the smallest constant such that N is aN -linear. In this
section, we are interested in computing aN . This number is interesting, as it can
give insights into the shape and complexity of the net, i.e. a large aN implies
complicated runs firing transitions several times, while a small aN implies some
degree of choice, where not all transitions can be fired for each initial token.

The main goal of this section is to show an algorithm for computing aN . Our
algorithm handles the more general class of aggregates on workflow nets, and
we can compute aN as such an aggregate. More formally, let N = (P, T, F ) be
a workflow net. An aggregate is a linear map f : QT → Q. The aggregate of a
(continuous) run is the aggregate of its Parikh image, that is f(π) := f(Rπ).

Example 4. Consider the aggregate fall(π) :=
∑

t∈T Rπ(t) = |π|, which com-
putes the number of occurrences of all transitions. Let us consider two other
natural aggregates. The aggregate ft(π) := Rπ(t) computes the number of oc-
currences of transition t, and fp(π) :=

∑
t∈T ∆(t)(p)·Rπ(t) computes the number

of tokens added to place p. Another use for aggregates is counting transition, but
with different weights for each transition, thus simulating e.g. different costs. ◁

Given a workflow net N and an aggregate f we define

supf,N = sup

{
f(π)

k
| k ∈ N>0, π ∈ RunskN

}
. (2)

Let us justify the importance of this notion by relating it to aN .

Proposition 1. Let N be a linear workflow net. Then aN = supfall,N .
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Proof. Recall that aN is the smallest number a such that |π| ≤ a · k for all k ∈
N>0 and π ∈ RunskN . Equivalently, |fall(π)|

k ≤ a. Thus by definition supfall,N ≤
aN , and the inequality cannot be strict since aN is the smallest number with
this property. ⊓⊔

Theorem 2. Consider a workflow net N and an aggregate f . The value supf,N
can be computed in polynomial time.

Corollary 1. Let N = (P, T, F ) be a linear workflow net. The constant aN can
be computed in polynomial time.

In practice, we can use an LP solver to compute the constant aN . The al-
gorithm is based on the fact that continuous reachability for Petri nets is in
polynomial time [20,7]. We formulate a lemma that relates the values of aggre-
gates under the continuous and standard semantics.

Lemma 4. Let N be a Petri net and f be an aggregate.

1. Let π ∈ RunskN . Then 1/k · π ∈ CRuns1N and f(1/k · π) = f(π)/k.
2. Let πc ∈ CRuns1N . There are k ∈ N and π ∈ RunskN with f(πc) = f(π)/k.

Proof. Both items are simple consequences of Lemma 1 and the linearity of
aggregates. Note that for (2), if πc = β1t1 . . . βntn then it suffices to define k
such that βi · k ∈ N for all i ∈ {1, . . . , n}. ⊓⊔

From the above lemma we immediately conclude the following.

Corollary 2. It holds that supf,N = sup{f(πc) | πc ∈ CRuns1N }.

Proof (The proof of Theorem 2). We use Corollary 2 and conclude that we have
to compute sup{f(πc) | πc ∈ CRuns1N }. Let S = {Rπc | πc ∈ CRuns1N }. As f(π)
is defined as f(Rπ), we reformulate our problem to compute sup{f(v) | v ∈ S}.
Since f is a continuous function, it holds that sup{f(v) | v ∈ S} = sup{f(v) |
v ∈ S}. Let us define LPf,N as an LP with variables x := x1, . . . , x|T | and
constraints ∆(T )x ≥ −{i : 1} and x ≥ 0.

Claim 1. It holds that v ∈ S if and only if v is a solution to LPf,N .

We postpone the proof of Claim 1. Claim 1 allows us to rephrase the com-
putation of sup{f(v) | v ∈ S} as an LPf,N where we want to maximise f(v),
which can be done in polynomial time. ⊓⊔

What remains is the proof of Claim 1. It constitutes the remaining part of this
Section. The claim is a special case of the forthcoming Lemma 8. Its formulation
and proof require some preparation.

Definition 1. A workflow net is good for a set of markings M ⊆ QP
≥0 if for

every place p there are markings m,m′ and continuous runs π and π′ such that
m(p) > 0, m′ ∈ M , and {i : 1} −→π

Q≥0
m −→π′

Q≥0
m′.
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The notion of being good for a set of markings is a refined concept of nonre-
dundancy. The nonredundancy allow us to mark every place. But if, after mark-
ing the place, we want to continue the run and reach a marking in a specific set
of markings M ⊆ QP

≥0, then we don’t know if the given place can be marked.
This motivates Definition 1.

Example 5. Let us consider a workflow net depicted on Fig. 4. It is nonredun-
dant, as every place can be marked. But it is not good for {f : 1} as there is no
continuous run to the marking {f : 1}. In the initial marking the only enabled
transition is t1 but firing βt1 for any β ∈ Q≥0 reduce the total amount of tokens
in the net. The lost tokens can not be recrated so it is not possible to reach
{f : 1}.

i

t1
p2 t2

f

t3

2

Fig. 4. A Petri net with places p1, p2, p3 and transitions t1, t2, t3. Marking {i : 1} is
drawn.

The important fact is as follows:

Lemma 5. Let M ⊆ QP
≥0 be a set of solutions of some LP. Then testing if a

net is good for M can be done in polynomial time.

Lemma 6. Suppose a workflow net N is good for M ⊆ QP
≥0 and M is a convex

set. Then there is a marking m+ such that m+(p) > 0 for every p ∈ P and
there are continuous runs π, π′, and a marking mf ∈ M such that {i : 1} −→π

Q≥0

m+ −→π′

Q≥0
mf .

Informally, we prove it by taking a convex combination of a |P | runs one for
each p ∈ P . The last bit needed for the proof of Lemma 8 is the following lemma,
shown in [20].

Lemma 7 ([20], Lemma 13). Let N be a Petri net. Consider m0, m ∈ NP

and v ∈ QT
≥0 such that:

– m = m0 +∆(v);
– ∀p ∈ •v : m0(p) > 0;
– ∀p ∈ v• : m(p) > 0.

Then there exists a finite continuous run π such that m0 −→π
Q≥0

m and Rπ = v.
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Lemma 8. Suppose M is a convex set of markings over QP
≥0 and that the work-

flow net is good for M . Let S be the set of Parikh images of continuous runs
that start in {i : 1} and end in some marking m′ ∈ M i.e.

S := {Rπ | ∃π∈CRuns1N
∃m′∈M such that {i : 1} −→π

Q≥0
m′}.

Then v ∈ S if and only if there is a marking m ∈ M such that ∆(T )v =
m− {i : 1}.

In one direction the proof of the lemma is trivial, in the opposite direction,
intuitively, we construct a sequence of runs with Parikh images converging to
v. The Lemma 6 is used to put ε in every place (for ε −→ 0) and Lemma 7 to
show that there are runs with the Parihk image equal εx+ (1− ε)v for some x
witnessing Lemma 6. We are ready to prove Claim 1.

Claim 1. It holds that v ∈ S if and only if v is a solution to LPf,N .

Proof. Let M be the set of all markings over QP
≥0, which clearly is convex. As

N is nonredundant we know that every place can be marked via a continuous
run, and because M is the set of all markings we conclude that N is good for
M according to Definition 1. Thus M satisfies the prerequisites of Lemma 8. It
follows that S is the set of solutions of a system of linear inequalities. Precisely,
v ∈ S if and only if there is m ∈ QP

≥0 such that ∆(T )v ≥ m−{i : 1} and v ≥ 0,
which is equivalent to ∆(T )v ≥ −{i : 1} and v ≥ 0, as required. ⊓⊔

5 Soundness in Terminating Workflow Nets

The dichotomy between linear termination time and non-termination shown in
Section 3 yields an interesting avenue for framing questions in workflow nets.
We know that testing generalised soundness is PSPACE-complete, but the lower
bound in [10] relies on a reset gadget which makes the net non-terminating.
Indeed, it turns out that the problem is simpler for linear workflow nets.

Theorem 3. Generalised soundness is coNP-complete for linear workflow nets.

A marking m is called a deadlock if RunsmN = ∅. To help prove the coNP
upper bound, let us introduce a lemma.

Lemma 9. Let N be a terminating nonredundant workflow net. Then N is
not generalised sound iff there exist k ∈ N and a marking m ∈ NP such that
{i : k} −→∗

Z m, m is a deadlock and m ̸= {f : k}. Moreover, if ∥N∥ ≤ 1 then
{i : k} −→∗

Z m can be replaced with {i : k} −→∗
Q m.

The last part of the lemma is not needed for the theoretical results, but it
will speed up the implementation in Section 7. We can now show Theorem 3.
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Proof (of the coNP upper bound in Theorem 3). Let N = (P, T, F ) and denote
T = {t1, . . . , tn}. By Lemma 9 N is not generalised sound iff there are k ∈ N and
m ∈ NP such that {i : k} −→∗

Z m,m is a deadlock andm ̸= {f : k}. We can reduce
the property to an ILP. First, the procedure guesses |T | places p1, . . . , pn ∈ P
(one for each transition). For each transition ti, place pi will prohibit firing ti
by not being marked with enough tokens. We create ILPN ,p1,...,pn

, which is very
similar to ILPN (see Section 3), but adds additional constraints. They state that
(∆(T )x)(pj)− •tj(pj) < 0 for every 1 ≤ j ≤ n.

Let us show that there are p1, . . . , pn such that ILPN ,p1,...,pn
has a solution iff

there exist k and a deadlock m such that {i : k} −→∗
Z m. Indeed, let x1, . . . , xn

be a solution of ILPN ,p1,...,pn . We denote k = −
∑n

i=1 ∆(ti)(i) · xi and m =
{i : k} +

∑n
i=1 ∆(ti) · xi. It is clear that {i : k} −→∗

Z m. The new constraints
ensure that for each ti ∈ T there exists pi ∈ P such that •ti(pi) > m(pi), thus
m is a deadlock.

To encode the requirement that m ̸= {f : k}, note that there are three cases,
either m(k) ≤ k− 1, m(k) ≥ k+ 1, or m(k) = k but m− {f : k} ≥ 0. We guess
which case occurs, and add the constraint for that case to ILPN ,p1,...,pn

. ⊓⊔

The lower bound can be proven using a construction presented in [11, Theo-
rem 2] to show a problem called continuous soundness on acyclic workflow nets is
coNP-hard. We say that a workflow net is continuously sound iff for all m such
that {i : 1} −→∗

Q≥0
m, it holds that m −→∗

Q≥0
{f : 1}. The reduction can be used

as is to show that generalised soundness of nets with linear termination time is
coNP-hard, but the proof differs slightly. See the appendix for more details.

6 Termination Time and Concurrent Semantics

Note that in Petri nets, transitions may be fired concurrently. Thus, in a sense,
our definition of termination time may overestimate the termination time.

In this section we investigate parallel executions for workflow nets. Whereas
the termination time is focused on the worst case sequential execution, now we
are interested in finding the best case parallel executions. Thus, we provide an
optimistic lower bound on the execution time to contrast the pessimistic upper
bound investigated in Section 3 and Section 4.

Definition 2. Given a Petri net N let π = t1t2 . . . tn ∈ RunskN for some k ∈ N.
A block in π is a subsequence of π, i.e. ta, . . . , tb for some 1 ≤ a ≤ b ≤ n. We
define the parallel execution of π with respect to k as a decomposition of π into
blocks π = π1π2 . . . πℓ such that

1. all transitions are pairwise different in a single block; and
2. •Rπi ≤ {i : k}+

∑
j<i ∆(πj) for every 1 ≤ i ≤ ℓ.

The execution time of a parallel execution is denoted as exec(π1π2 . . . πℓ) := ℓ.

Example 6.
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t3
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We consider parallel executions
of the run t1t2t1t2t3t3 with
respect to 4 initial tokens.
The run can be decomposed
into (t1t2)(t1t2)(t3)(t3) but
also into (t1)(t2t1)(t2t3)(t3).
Both executions have execution
time 4. The parallel execution
(t1t2)(t1t2t3)(t3) has execution
time 3. ◁

We are interested in finding the parallel executions of a run that minimise
the execution time. It turns out that the so-called greedy parallel execution is
such a minimal parallel execution. Given π and k it is defined inductively on the
prefix of π. Suppose we already have some blocks π1 . . . πi−1. To construct block
πi, we simply choose the maximal sequence of transitions immediately following
the last block πi−1 that satisfies the two conditions of Definition 2. In particular
the last partition in Example 6 is the greedy parallel execution.

Lemma 10. Consider a run π and k ∈ N. The greedy parallel execution of π
has the smallest execution time among all parallel executions of π with respect
to k.

Consider a workflow net N with the initial marking {i : k}. Let Sk := {π |
{i : k} −→π {f : k}}. We define MinTimeN (k) as the minimal execution time
among parallel executions of runs in Sk. If Sk = ∅ then MinTimeN (k) = +∞.

Lemma 11. Let N be a workflow net and let k, x ∈ N. Deciding whether
MinTimeN (k) ≤ x is PSPACE-hard even if we fix k = 1.

As computing MinTimeN (k) is computationally hard, we modify the ques-
tion and ask about the asymptotic behaviour (similarly to Section 4). Thus,

we are interested in computing limk→∞
MinTimeN (k)

k . The problem is well de-
fined as the limit exists (Lemma 15 in Appendix D). This is interesting as

limk→∞
MinTimeN (k)

k corresponds to the average processing time of a single to-
ken when the workflow runs (informally speaking) on its maximal efficiency.

Theorem 4. For a given nonredundant, generalised sound workflow net6 N we

can compute limk→∞
MinTimeN (k)

k in polynomial time.

Proof (A sketch of the proof). The main idea relies on the continuous semantics,
similarly to the proof of Theorem 2. We show that the limit is equal to the
infimum over execution times7 of continuous runs {i : 1} −→Q≥0

{f : 1}. Then we

prove the following claim.

6 These assumptions can be relaxed to a net good for {f : 1}, see Definition 1 in Ap-
pendix B.

7 For a suitably defined parallel execution and execution time of continuous runs.
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Claim 2. Let v ∈ QT
≥0. Let Sv = {π | {i : 1} −→π

Q≥0
{f : 1} and Rπ = v}. If S ̸= ∅

then the infimum over optimal execution time of runs in Sv equals ∥v∥.

Let S be the set of Parikh images of continuous runs from {i : 1} to {f : 1}.
We define f : S → Q≥0 such that f(v) = ∥v∥. Thus we can reformulate the
problem as computing inf{f(v) | v ∈ S}. The function f is continuous, thus
we can reformulate further as compute inf{f(v) | v ∈ S}. The function f is
not linear on S, but it is piecewise linear. We define St ⊆ S for t ∈ T as follows
St = {v | v ∈ S and v(t) ≥ v(t′) for all t′ ∈ T}. Observe that f is linear over
St for every t ∈ T and that S =

⋃
t∈T St. Thus we can rephrase our problem as

computing the minimum over the set {inf{v(t) | v ∈ St} | t ∈ T}.
Thus it is sufficient to show that inf{v(t) | v ∈ St} can be computed in

polynomial time for any t ∈ T . Lemma 8 in Appendix B allows us to characterize
S as follows: v ∈ S iff ∆(T )v = {f : 1} − {i : 1} and v ≥ 0. In consequence, St

can be characterized as the set of solutions of the following system of inequalities

∆(T )v = {f : 1} − {i : 1} and v ≥ 0 and v(t) ≥ v(t′) for all t′ ∈ T.

This allows us to capture {inf{v(t) | v ∈ St} | t ∈ T} as an LP problem which
can be solved in polynomial time. ⊓⊔

7 Experimental Evaluation

We have implemented prototypes of several procedures outlined in the paper,
namely procedures to 1) decide termination; 2) decide soundness for terminat-
ing nets; 3) compute aN for terminating nets; and 4) compute MinTimeN (1),
MaxTimeN (1), and decide 1-soundness for nets with known aN . The idea be-
hind all procedures is to use our results to encode the properties in LPs/ILPs.
To solve these programs, we utilize the MILP solver Gurobi [25].

For 1), recall Lemma 2, which states that non-termination of a workflow net
N is equivalent to the existence of a Parikh image R ∈ NT with ∆(R) ≥ 0. We
can instead search for R ∈ QT , as any solution could be scaled up to an integral
one. Thus, we can encode this condition as an LP in a straightforward manner,
and decide termination in polynomial time.8

For 2), we essentially use ILPN ,p1,...,pn
, as defined in the proof of Theorem 3.

A solution to ILPN ,p1,...,pn yields a run π such that there exists k ∈ N with
{i : k} −→π

Z m, where m is a deadlock.
We also consider continuous instead of integral variables. Then solutions

relate to runs over −→∗
Q instead. As hinted at in the last sentence of Lemma 9,

both variants yield equivalent results on nets without arc weights, i.e. ∥N∥ ≤ 1.
However, continuous variables are generally easier to handle for MILP solvers.
For brevity, by integer deadlocks we refer to the approach using integer variables,
and by continuous deadlocks to the approach with continuous variables.

For 3), recall the LP given in Claim 1. We can use it to compute supf,N
for any aggregate N , so in particular we can use it to compute supfall,N , which

8 This observation and the general approach comes from [31].
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is equal to aN by Equation (2). Here, it only remains to mention that Gurobi
allows not only checking feasibility of systems of linear inequalities, but further
allows optimizing an objective value, as required by the LP.

For 4), note that if we have the bound aN on the length of runs from {i : 1}, we
can check properties by unrolling runs. The intuition is as follows. We have aN ·
|T | integer variables. For step j of the run, we have variables x1,j , x2,j , . . . , x|T |,j .
The variables for a step encode which transition(s) are fired in that step. We

ensure that we encode a run by requiring
∑|T |

i=1 xi,j ≤ 1 for all j ∈ [1..aN ]. We
use integer variables, so either one or no transition is fired in each step.

Alternatively, we encode a parallel execution by imposing the requirements
of Definition 2 on steps. By further specifying that for all j ∈ [1..aN ], it holds

that {i : 1} +
∑j

j′=0

∑|T |
i=1 ∆(ti)xi,j′ ≥ 0, thus the marking reached so far after

each step is nonnegative. To compute MinTimeN (1)/MaxTimeN (1), we min-
imise/maximise the number of blocks/steps with non-zero transition variables.
For 1-soundness, we require reaching a deadlock different from {f : 1}.

Our prototype is implemented in C#. All experiments were run on an 8-Core
Intel® Core™ i7-7700 CPU @ 3.60GHz with Ubuntu 18.04. We limited memory
to ∼8GB. The time was limited to 60s for checking termination and generalised
soundness as well as for computing aN . It was limited to 15s for computing
MinTimeN (1),MaxT imeN (1) and for checking 1-soundness.

7.1 Benchmark Suite

We use a popular benchmark suite of 1386 free-choice nets originating from mod-
els created in the IBM WebSphere Business Modeler. The instances were orig-
inally introduced in [19] and have frequently been studied since, see [14,40,39].
The nets use a slightly different formalisation of workflow nets that allow mul-
tiple final places, which can be transformed to standard workflow nets using
a technique from [30]. This technique adds transitions, thus can increase aN ,
MinTimeN and MaxTimeN . Unfortunately, 4 instances cannot be transformed
to workflow nets with this technique, so we remove them. We also apply a set of
well-known reduction rules from [14] that reduce the size of instances while keep-
ing all types of soundness intact, and remove instances that are trivially sound
after reduction. These rules never increase aN . While they in theory could in-
crease MinTimeN , this does not happen on our benchmarks. Due to the nature
of the reduction rules, it may not be appropriate to run them before analyzing
MinTimeN ,MaxT imeN (1) and aN , since these numbers then give no informa-
tion about the original workflow. Thus we only run experiments on the reduced
instances when we check soundness and termination.

In total, we are left with 1382 unreduced and 740 non-trivial reduced in-
stances. Statistics about the sizes of the workflow nets can be seen in the columns
under Net Size in Figure 5. The reduced nets are much smaller than the unre-
duced ones, even when the nets are not reduced to the trivial net.
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Net Size Analysis Time (in ms)

|P | |T | Termination
Continuous
Deadlock

Integer
Deadlock

Continuous
Soundness [11]

Unreduced
instances

Mean 48.78 33.07 4.09 7.17 12.8 2022.54
Median 37 26 3 5 11 88
Max 274 285 23 85 88 55707

Reduced
instances

Mean 7.43 5.49 2.99 2.3 8.88 44.51
Median 6 5 3 2 8 33
Max 33 22 5 18 39 99

Total
Deadlocking

(Not generalised sound)

Unreduced
instances

Terminating 1262 523
Nonterm. 120 53

Reduced
instances

Terminating 694 536
Nonterm. 46 23

Fig. 5. Top: Statistics on the net size, and analysis times for deciding termination,
and checking generalised soundness via deadlocks and continuous soundness. Bot-
tom: Statistics on the number of terminating/non-terminating and deadlocking/non-
deadlocking (thus generalised unsound/generalised sound) nets.

7.2 Termination and Deadlocks

The time taken to decide termination is shown in the column labelled “Termi-
nation” in the top table of Figure 5. The numbers of nets that are terminating
and non-terminating are shown in the bottom table of Figure 5. Among both
the unreduced and reduced instances, the vast majority are terminating (about
90%). Note that the reduction rules can remove nontermination, even when they
do not make the net nontrivial, thus the prevalence of terminating instances is
even stronger among the reduced instances. In terms of analysis time, termina-
tion can be decided in under 25ms for all instances, with a median of 3ms.

The top of Figure 5 shows the analysis times for generalised soundness. We
use three algorithms. Columns “Continuous Deadlock” and “Integer Deadlock”
show results for our two proposed approaches, and column “Continuous Sound-
ness” shows the performance of a state-of-art approach [11] for deciding gener-
alised soundness. Note that both approaches may claim an unsound workflow
net to be sound, but they are precise on different classes of nets. The absence of
integer deadlocks is equivalent to generalised soundness on terminating nets, see
Lemma 9. Similarly, continuous soundness is equivalent to generalised soundness
on free-choice nets [11].

In practice, it turns out that our approach for checking the absence of inte-
ger deadlocks is faster than the existing approach using continuous soundness on
every single instance. Continuous soundness times out on 215 of the unreduced
instances (not listed in the table), but neither of the approaches utilizing dead-
locks times out on any instance. The performance of continuous soundness is



Fast Termination and Workflow Nets 19

not surprising: continuous soundness is checked by passing an ∃∀-formula from
FO(Q, <,+) to an SMT solver. Quantifier alternation increases the complexity
of validating such formulas [24]. In comparison, our check for integer deadlocks
is implemented using standard ILP techniques, and thus an existential formula.

The bottom shows how many nets are non-terminating, as well as how many
are deadlocking (thus not generalised sound). Recall that integer deadlocks and
continuous deadlocks are equivalent for nets without arc weights, which all of
our nets are. Both types of deadlocks are fast to compute, taking less than 90ms
on each instance. In practice, checking for continuous deadlocks may be useful
even for nets with arc weights, since their absence also proves the absence of
integer deadlocks. About 50% of the unreduced instances and roughly 75% of
the reduced instances are deadlocking. Note that the reduction rules can only
make sound instances trivial, which are by definition not able to reach a deadlock.

7.3 aN , MinTimeN (1) and MaxTimeN (1)

The top of Figure 6 the distribution of aN . This number depends on the number
of transitions, so is hard to put into context. We instead display L := aN/|T |.
Intuitively, that number is an upper bound on the average of how many times
each transition can be fired per initial tokens. For example, a net with L = 1
likely is linear, i.e. each transition can be fired only once per initial token, while
nets with L >> 1 may exhibit more complex behaviour, and nets with L << 1
may exhibit high degrees of choice, where runs only visit a part of the net. We
group nets with similar L to give an idea of the distribution of the values of L
across instances. Our computation of aN ran out of memory on 8 nets, so the
figure displays only 1254 nets. Most nets have L ≤ 1, with a significant number
having in particular L = 1. The maximal L is 5.83 among unreduced and 4.33
among reduced instances, while the minimal L is 0.17 and 0.11 respectively.

To display MinTimeN (1) and MaxTimeN (1), we also divide them by the
number of transitions, as we did for aN . We write TMin := MinTimeN (1)/|T |

and TMax := MaxTimeN (1)/|T |. We are mostly interested in their difference D :=
TMax − TMin. For nets with large D, the difference between the pessimistic
sequential and optimistic parallel execution time is large, thus they might allow
a high degree of parallelism. On the contrary, if nets have very small D, they
have a sequential structure. We again group nets with similar D, as we did for
L above. The results of the analysis are shown in the middle table of Figure 6.

As we divide by |T | in the definition of D, it would be unusual for it to
take on huge values, and indeed all nets have D < 1. Note that even D = 0.5 is
significant, as it means thatMinTimeN (1) andMaxTimeN (1) differ by half the
number of transitions. The table totals only 700 nets. On 111 nets, computing
MinTimeN (1) times out, while on 32 nets computing MaxTimeN (1) times out,
and both time out on 51 nets. On the remaining 360 nets, there is no execution
from {i : 1} to {f : 1}, thus MinTimeN (1) = ∞.

The analysis times for computing aN , MinTimeN (1) and MaxTimeN (1)
are shown in the bottom table of Figure 6. We group nets by their size |N | =
|P | + |T | to show how the analysis times depend on the instance size. We only
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Buckets B
[0, 0.75) [0.75, 1) [1, 1] (1, 1.75) [1.75,∞)

Count with L ∈ B 303 274 422 173 82

Buckets B
[0, 0.05) [0.05, 0.15) [0.15, 0.3) [0.3, 0.5) [0.5, 1)

Count with D ∈ B 29 222 295 120 34

Buckets B
[0, 20) [20, 60) [60, 150) [150, 405)

Count with |N | ∈ B 241 391 388 40

Analysis time
for computing
aN (in ms)

Mean 11.9 9.56 9.65 9.8
Median 7 7 8 8
Max 714 246 289 33

Analysis time
for computing

MinTimeN (1) (in ms)

Mean 8.29 120.52 1610.44 2128.83
Median 8 36 307 1454
Max 14 6599 14905 12160

Analysis time
for computing

MaxTimeN (1) (in ms)

Mean 3.99 44.23 669.66 5305.5
Median 4 29 173 4934
Max 8 2561 12370 14954

Fig. 6. Top: Statistics on the distribution of L. Middle: Statistics on the distribution
of D. Bottom: Statistics on the analysis times for aN , IMin and IMax.

list 1060 nets, as we omit those where the computation of MinTimeN (1) or
MaxTimeN (1) timed out. One interesting observation is that for most instances,
particularly small ones,MinTimeN (1) is harder to compute thanMaxTimeN (1).
However, both are very slow to compute compared to aN , which indeed never
times out on our instances. In fact, aN takes at most 714ms to compute for
any instance. It is interesting that the time for computing aN does not seem to
depend highly on the net size. We suspect this might be partly due to the fact
that aN tends to be proportionally smaller for larger instances: Bucket [0, 20)
has a mean L of 1.04, while the mean is 0.86 for bucket [150, 405).

7.4 1-Soundness

Lastly, we briefly comment on the time for deciding 1-soundness via unrolling
for nets with known aN . The procedure times out for 71 instances, among which
aN has a mean of 133.88 and a maximum of 256. It takes a mean of 612.66ms
and a maximum of 14431ms to decide 1-soundness in this way. Unlike in the
case for generalised soundness, our procedure for 1-soundness does not seem to
be able to compete with the state-of-the-art. In [19], 1-soundness is decided for
many of our instances in a few milliseconds per instance, which our approach
does so only for instances with small aN (up to about 25).
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A Missing proofs of Section 3

This section is devoted to prove Theorem 1 and Lemma 2. We start from some
preliminary lemmas useful in the proof. Then we restate and prove Lemma 2.
Finally, we restate and prove Theorem 1.

Lemma 12 (Reformulation of Lemma 5.5 in [10]9). Let N = (P, T, F )
be a nonredundant workflow net. Let k ∈ N, m ∈ NP , and π be a run such that
{i : k} −→π

Z m. There exist ℓ ∈ N, m′ ∈ NP and a run π′ with Rπ = Rπ′ such

that {i : ℓ} −→δ m′ and {i : ℓ+ k} −→δπ′
m+m′.

Intuitively, the lemma states that any run under −→∗
Z can be turned into a run

under −→∗ when starting at a large enough initial marking. The lemma follows
from nonredundancy. Roughly, each place can be filled with arbitrarily many
tokens, so with enough tokens to cause run π to remain positive in any place.

We say that a workflow net N = (P, T, F ) is Z-unbounded if there exists
R ∈ NT such that ∆(R) > 0. The following lemma shows, intuitively, that
Z-boundedness guarantees a bound on the norm of reachable configurations.

Lemma 13 (Lemma 5.10 in [10]). Let N = (P, T, F ) be a workflow net.
Suppose {i : k} −→∗

Z m, where m ∈ NP . There exists a constant c depending only
on k and N such that if ∥m∥ > c then N is Z-unbounded.10

The following lemma can be shown using Lemmas 12 and 13.

Lemma 2. Let N = (P, T, F ) be a nonredundant workflow net. Then N is non-
terminating iff there exists a nonzero R ∈ NT such that ∆(R) ≥ 0.

Proof. ⇐= Let R be a nonzero vector such that ∆(R) ≥ 0 and denote m =
∆(R). By Lemma 12 there exists ℓ such that {i : ℓ} −→∗ m′ −→π m+m′ for some
m′ ∈ NP , and where the Parikh image of π is R. Since m ≥ 0, it remains to
observe that for every e ∈ N we have e·m+m′ −→π (e+1)·m+m′. SinceRπ = R
and R is non-zero, it must hold that |π| > 0. Thus, N is non-terminating.

=⇒ Suppose N is non-terminating. Fix k such that MaxTimeN (k) = ∞.
Consider a run πn = t1 . . . tn and for every 1 ≤ i ≤ n let πi = t1 . . . ti be the first
i transitions of πn. We denote as mi ∈ NP the marking such that {i : k} −→πi mi.
Let c be the constant from Lemma 13. If ∥mi∥ > c for some 1 ≤ i ≤ n then
by Lemma 13 N is Z-unbounded and we are done. Otherwise ∥mi∥ ≤ c for all
1 ≤ i ≤ n. We can assume that n is arbitrarily big as MaxTimeN (k) = ∞. By
the pigeonhole principle, there exist i < j < n such that mi = mj . We are done
since ∆(Rti+1...tj ) = 0. ⊓⊔
9 Similar statements were already known in [28], but in the context of this work it will
be more convenient to use the formulation from [10]. The formulation of Lemma 5.5
in [10] does not deal with π and π′, but simply states that {i : ℓ + k} −→∗ m +m′.
The proof of the statement reorders the transitions in π, which implies the stronger
statement that we need in Lemma 12. We require this to prove Lemma 2.

10 In [10], an exponential bound on the size of c is given, but we will not need it.
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Note that the condition ∆(R) ≥ 0 is very similar to N being Z-unbounded,
except that the inequality is non-strict. Before we go further, we need one more
relaxed semantics for Petri nets.

Definition 3 (Rational semantics). Rational semantics for Petri nets is a
combination of continuous and integer semantics. So, like in continuous seman-
tics, whenever we fire a transition it is multiplied by a scalar β ∈ Q≥0 i.e. βt.
From the integer semantics we take that we can fire βt even if it is not enabled.
So markings are in QP where P is the set of places. We write m −→βt

Q m′ to
denote that m′ = m + β · ∆(t). Like before −→∗

Q is a transitive closure of the
single step relation.

Let us relate −→∗
Z and −→∗

Q to solutions of LPs/ILPs. This is inspired by the
definition of ILPN in [10], but differs slightly as we leave the effect on the initial
place implicit. Let N = (P, T, F ) be a nonredundant workflow net. We define
ILPN with a |T | dimensional vector of variables x and inequalities: x ≥ 0 and
∆(T )x ≥ 0− {i : ∞}.11
We recall.

Lemma 3. [Adapted from Claim 5.7 in [10]] For every k ∈ N, m ∈ NP , and a
run π, it holds that {i : k} −→π

Z m iff Rπ is a solution to ILPN with the additional

constraint
∑|T |

i=1 ∆(ti)(i) ·Rπ(ti) ≥ −k.

We also need another lemma.

Lemma 14 (Lemma 4.3 in [10]). Let G := A · x ≥ b be an (m × n)-ILP,

where b ≥ 0. There exists c ≤ ∥G∥O((m+n) log(m+n))
such that for every µ ∈ NT

satisfying A · µ ≥ b, there exists ν ∈ NT satisfying A · ν ≥ b such that ν ≤ µ,
ν ≤ c, and A · ν ≤ A · µ.

Finally, we can restate Theorem 1 and prove it.

Theorem 1. Every workflow net N is either non-terminating or linear. More-

over, MaxTimeN (k) ≤ ak for some a ≤ ∥N∥poly(|N |)
.

Proof. As explained in Section 2.3 we can assume that N is nonredundant, i.e.
for all p ∈ P there exists k ∈ N such that {i : k} −→∗ m with m(p) > 0.

Let N = (P, T, F ) and denote T = {t1, . . . , tn}. By Lemma 2 we need to
prove that if there is no R ∈ NT such that ∆(R) ≥ 0, then N is linear. Indeed,
let as assume that there is no such R.

We denote x = (x1, . . . , x|T |). Let A be the matrix such that A · x ≥ 0
encodes ILPN . Precisely, the matrix A is a matrix ∆(T ) from which the row for
the place i is removed. Let k ∈ N and consider a run {i : k} −→π

Z m. Note that
Rπ is a solution to ILPN by Lemma 3. Let c be the constant from Lemma 14
for ILPN . We will show that |π| ≤ c|T | · k, which will conclude the proof as

c ≤ ∥N∥poly(|N |)
, thus c|T | depends only on N .

11 The inequality indexed by the place i can be dropped, as trivially satisfied by any
valuation of x.
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By Lemma 14 there is a solution R1 of ILPN with R1 ≤ Rπ and R1 ≤ c.
Since R1 ≤ Rπ, we have R2 := Rπ −R1 ∈ NT . By Lemma 14 we have A ·R1 ≤
A ·Rπ. Thus A ·R2 = A · (Rπ −R1) ≥ 0. This proves that R2 is a solution to
ILPN .

Note that ∆(R1) ≥ 0 or ∆(R2) ≥ 0 would contradict our initial assumption.
Since bothR1 andR2 are solutions to ILPN they can have negative effect only in
i. By recursively applying Lemma 14 toR1 andR2 we get aRπ = R1+R2 . . .Rl,
where 0 ≤ Ri ≤ c. Moreover, l ≤ k, since every Ri has a negative effect on i
and the initial marking is {i : k}. This shows that |π| ≤ c · |T | · l ≤ c · |T | · k. ⊓⊔

B Missing proofs of Section 4

Lemma 5. Let M ⊆ QP
≥0 be a set of solutions of some LP. Then testing if a

net is good for M can be done in polynomial time.

Proof. Continuous reachability relation m −→∗
Q≥0

m′ can be expressed as a for-

mula Φ(m,m′) in a logic defined in [8], more precisely see [8, Theorem 3.6].
Roughly speaking, the logic is existentially quantified linear programming ex-
tended with implications of the following form: xi > 0 =⇒ xj > 0. For example
in this logic one can write the formula

Λ(y) = ∃x∈Qd A · x+A′ · y ≥ b ∧ x(5) > 0 =⇒ y(7) > 0 ∧
x(5) > 0 =⇒ x(8) > 0 ∧ x(2) > 0 =⇒ y(3) > 0

The satisfiability of formulas in this logic is in polynomial time.
To test if the net is good for M we write the formula:∧

p∈P

∃mp∈Qd∃m′
p∈Qd mp ≥ 0 ∧mp(p) > 0 ∧ m′

p ∈ M

∧ Φ({i : 1},mp) ∧ Φ(mp,m
′
p)

⊓⊔

Lemma 6. Suppose a workflow net N is good for M ⊆ QP
≥0 and M is a convex

set. Then there is a marking m+ such that m+(p) > 0 for every p ∈ P and
there are continuous runs π, π′, and a marking mf ∈ M such that {i : 1} −→π

Q≥0

m+ −→π′

Q≥0
mf .

Proof. As N is good for M we know that for every p ∈ P there are runs πp, π
′
p

and a marking mp such that mp(p) > 0 and {i : 1} −→π
Q≥0

m −→π′

Q≥0
m′

p for some

m′
p ∈ M . Because of Lemma 1 we know that {i : 1

|P |} −→
1

|P |πp

Q≥0

1
|P |mp −→

1
|P |π

′
p

Q≥0

1
|P |m

′
p. Let P = {p1 . . . pl}. We define

– π = 1
|P |πp1

1
|P |πp2 . . .

1
|P |πpl

,

– π′ = 1
|P |π

′
p1

1
|P |π

′
p2

. . . 1
|P |π

′
pl
,
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– m+ = 1
|P |mp1 + 1

|P |mp2 . . .
1
|P |mpl ,

– mf = 1
|P |m

′
p1

+ 1
|P |m

′
p2

. . . 1
|P |m

′
pl

We have to check that m+,mf , π, π
′ have all of the required properties. First,

we observe that {i : 1} −→π
Q≥0

m+ −→π′

Q≥0
mf . Further, asmp(p) > 0 andmp ≥ 0

for every p ∈ P then m+(p) > 0 for every p ∈ P . Finally, as M is convex and
m′

p ∈ M for every p ∈ P we have that mf = 1
|P |m

′
p1

+ 1
|P |m

′
p2

+ . . .+ 1
|P |m

′
pl

∈
M. ⊓⊔

Lemma 8. Suppose M is a convex set of markings over QP
≥0 and that the work-

flow net is good for M . Let S be the set of Parikh images of continuous runs
that start in {i : 1} and end in some marking m′ ∈ M i.e.

S := {Rπ | ∃π∈CRuns1N
∃m′∈M such that {i : 1} −→π

Q≥0
m′}.

Then v ∈ S if and only if there is a marking m ∈ M such that ∆(T )v =
m− {i : 1}.

Proof. ( =⇒ ) If v ∈ S then this is trivial. Otherwise, we exploit the fact that
the set of solutions of the program on the right is a closed set.

( ⇐= ) To prove the opposite implication, it suffices to define a sequence
of continuous runs {i : 1} −→πi

Q≥0
mi such that each mi ∈ M and their Parikh

images converge to v. Let m+ be a marking such that m+(p) > 0 for all p ∈ P

and {i : 1} −→ρ
Q≥0

m+ −→ρ′

Q≥0
mf for some mf ∈ M ; we know it exists because

of Lemma 6.
For any rational number 0 < ε ≤ 1 there is a run

{i : 1} −→ερ
Q≥0

{i : 1− ε}+ εm+ −→πε

Q≥0
(1− ε)m+ εm+ −→ερ′

Q≥0
(1− ε)m+ εmf ,

such that Rπε = (1 − ε)v. The first part is correct because of Lemma 1 ap-
plied to the run ρ. The second part is correct because of Lemma 7. Indeed,
markings {i : 1− ε}+ εm+ and (1− ε)m+ εm+ are positive on all places and
∆(T ) ((1− ε)v) = (1− ε)(m− {i : 1}). The third part is correct one more time
because of Lemma 1 applied to the run ρ′.
Moreover the final marking (1− ε)m+ εmf ∈ M as the set M is convex.

So we define our sequence as (ερ)πε(ερ
′) where ε = 1

n for n ∈ N and n → ∞.
⊓⊔

C Missing proofs of Section 5

Missing intuition for the proof of coNP-hardness in Theorem 3. The reduction
in [11, Theorem 2] is the problem of checking whether a given formula in DNF
is a tautology, which is coNP-complete. The constructed acyclic workflow net
N depends on the input formula φ. It is not important to know the formal
definition of acyclic workflow nets, we only use the property that acyclic nets
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are terminating (which is the case). Thus, the workflow net constructed in [11,
Theorem 2] is terminating and by Theorem 1 it is also linear. Without going into
the details of N we highlight the important bits in the proof of [11, Theorem 2]
showing that ϕ is generalised sound iff φ is a tautology.

=⇒ Suppose N is generalised sound. By [11, Theorem 1] it implies being
continuous sound. The proof in [11, Theorem 2] shows that then φ is a tautology.

⇐= Suppose φ is a tautology. Let {i : k} −→∗ m for some k ∈ N. Note that
{i : k} −→∗

Q≥0
m trivially holds. By Lemma 1 we can also rescale the continuous

run and obtain {i : 1} −→∗
Q≥0

m · 1
k . The proof in [11, Theorem 2] implies that

m · 1
k −→ρ

Q≥0
{f : 1} for some continuous run ρ = α1t1 . . . αntn. By Lemma 1

m −→kρ
Q≥0

{f : k}. It remains to observe that kρ is essentially a run (not just

a continuous run). It suffices to prove that k · αi is a natural number for all
1 ≤ i ≤ n. A close inspection of the proof in [11, Theorem 2] shows that αi are
defined as the number of tokens in m · 1

k , which concludes the proof. ⊓⊔

Lemma 9. Let N be a terminating nonredundant workflow net. Then N is
not generalised sound iff there exist k ∈ N and a marking m ∈ NP such that
{i : k} −→∗

Z m, m is a deadlock and m ̸= {f : k}. Moreover, if ∥N∥ ≤ 1 then
{i : k} −→∗

Z m can be replaced with {i : k} −→∗
Q m.

Proof. =⇒ Suppose N is generalised unsound. There exist k and m′ such
that {i : k} −→∗ m′ ̸−→∗ {f : k}. Since N is terminating there exists m′ −→∗ m
such that m is a deadlock. Since m′ ̸−→∗ {f : k} we know that m ̸= {f : k}. We
have obtained k and m as required. In this case the additional statement of the
lemma is trivial as we also have {i : k} −→∗

Q m.
⇐= Let k and m be as in the lemma. By definition {i : k} −→∗

Z m ̸−→∗ {f : k}.
Now, generalised unsoundness is a simple corollary of Lemma 12 (it follows
directly from [10, Lemma 5.6]). We obtain that {i : k + l} −→∗ m+m′ for some
l ∈ N and marking m′ such that {i : l} −→∗ m′. To conclude, it holds that either
m′ ̸−→∗ {f : l} or m + m′ −→∗ m + {f : l}. In both cases, N is not generalised
sound.

It remains to deal with the additional case, where we only assume that
{i : k} −→π

Q m ̸−→∗ {f : k} for some rational run π. The assumption ∥N∥ ≤ 1
gives us that for every transition t there is a place pt such that •t = 1 and
m(pt) = 0. In other words the places that do not have enough tokens to enable
a transition need to have 0 tokens. By Lemma 112 {i : ak} −→a·π

Q a ·m for every
a ∈ N. We can choose a such that a ·π is an integer run (not just a rational run).
It remains to observe that a ·m is a deadlock because a ·m(pt) = 0 for all transi-
tions t. We have reduced the problem to the previous case as {i : ak} −→a·π

Z a ·m
for the chosen a. ⊓⊔

D Missing proofs of Section 6

We start from restating Lemma 10.

12 Lemma 1 of course holds for rational runs as well.
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Lemma 10. Consider a run π and k ∈ N. The greedy parallel execution of π
has the smallest execution time among all parallel executions of π with respect
to k.

Proof. The idea of the proof is that any parallel execution can be transformed
into the greedy execution. The crucial observation is that every transformation
step cannot increase (but might decrease) the execution time. Let ρ1 . . . ρm be
the greedy parallel execution.

The transformation step is defined as follows. Suppose π1π2 . . . πl is not a
greedy parallel execution. Let i be the a first block such that πi ̸= ρi. Note that
it must be the case that πi is strictly contained in ρi. Indeed, ρi−1 = πi−1 and
ρi is the maximal possible block after πi−1. Thus the block πi+1 is nonempty,
i.e. we can write it as tπ′

i+1, where t ∈ T and π′
i+1 is a (possibly empty) block.

We define the new parallel execution by moving t to the previous block, i.e.
π1, . . . , πi−1(πit)π

′
i+1πi+2 . . . πl. To see that this is a parallel execution we need

to prove that the two conditions in Definition 2 hold for the two new blocks
(πit) and π′

i+1 (for the remaining blocks nothing has changed). Indeed, (πit) is
contained in ρi, thus it satisfies both conditions. For π′

i+1 we need to check the
second condition. We have

•Rπ′
i+1

= •Rπi+1
− •t ≤ {i : k}+

∑
j≤i

∆(πj)− •t ≤
∑
j≤i

∆(πj) +∆(t).

It remains to observe that the execution time of the new parallel execution is
at most l (it could decrease if π′

i+1 is empty). It is easy to see that after every
transformation step the parallel execution agrees on a longer prefix with the
greedy execution. Thus it has to terminate with the greedy execution. ⊓⊔

Now we restate and prove Lemma 11.

Lemma 11. Let N be a workflow net and let k, x ∈ N. Deciding whether
MinTimeN (k) ≤ x is PSPACE-hard even if we fix k = 1.

Proof. We reduce from the reachability problem of conservative Petri nets, which
is known to be PSPACE-hard [38]. A conservative Petri net is a Petri net N =
(P, T, F ) such that

∑
p∈P ∆(t)(p) = 0 for every t ∈ T . In simpler words, every

transition preserves the number of tokens in the Petri net. Let m and m′ be the
markings for which we ask whether m −→∗ m′.

We define the workflow net N ′ = (P ′, T ′, F ′), where P ′ = P ∪ {i, f, r}, i.e.
there are three extra places, including the initial and final places. Slightly abusing
the notation we write m and m′ as markings over P ′, by fixing the values to
0 on the new places i, f, r. The set of transitions is T ′ = T ∪ {ti, tf}. The arc
function F ′ is the same as F when restricted to P × T ∪ T × P . Additionally:

1. •ti(i) = 1, •ti(p
′) = 0 for all p′ ∈ P ′ \ {i} and t•i = m+ {r : 1};

2. •tf(f) = m′ + {r : 1} and t•f (f) = 1, t•f (p
′) = 0 for all p′ ∈ P ′ \ {f};

3. •t(r) = t•(r) = 1 and t consumes and produces 0 tokens on places i and f
for all t ∈ T .
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It remains to observe that this is a workflow net. Indeed, the only nontrivial
condition is whether all places and transitions are on a path from i to f. It is
easy to see that the place r is on such a path. Moreover, all other places and
transitions are connected with r through the transitions in T . (In the special
case that for a node p ∈ P no token is ever consumed or produced it is easy to
see that p can be removed from N without changing the reachability question).

Let c =
∑

p∈P m(p) , i.e. the number of tokens in the initial configuration

of N . We define x = |P ′|c, which is an upper bound on the size of all possible
configurations in N (recall that it is a conservative Petri net). We claim that
m −→∗ m′ in N if and only if MinTimeN (1) ≤ x for N ′.

Indeed, it suffices to observe that N ′ essentially simulates N . The transition
ti initialises the configuration tom (plus one token in the special place r) and the
transition tf checks whetherm

′ was reached (note that becauseN is conservative
coverability and reachability are the same problems). The special place r is for
two reasons. First, because of r a block in a parallel execution can be only of
length one. Indeed, as an invariant after firing ti and until firing tf the place
r has always 1 token. Since all other transitions consume a token from r no
two transitions can be fired in parallel. Thus whether MinTimeN (1) = x is
equivalent to the question whether there is a run of length at most x. To conclude
it remains to observe that if there is a run then there is a run of length bounded
by x (as in the shortest run no configuration can repeat). ⊓⊔

Now we move to the analysis of limk→∞
MinTimeN (k)

k . We start by proving
that it exists.

Lemma 15. It holds that

lim inf
k→∞

MinTimeN (k)

k
=

lim sup
k→∞

MinTimeN (k)

k
=

lim
k→∞

MinTimeN (k)

k
.

Proof. First notice that

MinTimeN (a+ b) ≤ MinTimeN (a) +MinTimeN (b) (3)

(simply because we can sequentially use the parallel execution of MinTimeN (a)
and then MinTimeN (b)). To prove the lemma it suffices to prove that

lim sup
k→∞

MinTimeN (k)

k
≤ lim inf

k→∞

MinTimeN (k)

k
. (4)

Let n1 < n2 < n3 < . . . be the indices such that

lim inf
k→∞

MinTimeN (k)

k
= lim

k→∞

MinTimeN (nk)

nk
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and let m1 < m2 < m3 < . . . be the indices such that

lim sup
k→∞

MinTimeN (k)

k
= lim

k→∞

MinTimeN (mk)

mk
.

Note that we can replace (ni) or (mi) with any of their infinite subsequences. In
particular without loss of generality we can assume thatMinTimeN (ni)·ni < mi

for all i ∈ N>0.
For every i let ai ∈ N>0 and 0 ≤ ri ≤ ni − 1 be the unique decomposition of

mi modulo ni, i.e. mi = ai · ni + ri. By Eq. (3) we get

MinTimeN (mi)

mi
=

MinTimeN (ai · ni + ri)

mi

≤ ai ·MinTimeN (ni)

mi
+

MinTimeN (ri)

mi

≤ ai ·MinTimeN (ni)

ai · ni
+

MinTimeN (ri)

mi

≤ MinTimeN (ni)

ni
+

MinTimeN (ni)

mi

≤ MinTimeN (ni)

ni
+

MinTimeN (ni)

MinTimeN (ni) · ni

≤ MinTimeN (ni)

ni
+

1

ni

(5)

So

lim sup
k→∞

MinTimeN (k)

k
= lim

i→∞

MinTimeN (mi)

mi

≤ lim
i→∞

MinTimeN (ni)

ni
+

1

ni
= lim

i→∞

MinTimeN (ni)

ni

= lim inf
k→∞

MinTimeN (k)

k

(6)

as required by Equation (4), and we are done. ⊓⊔

The proof of Theorem 4. The proof of the theorem requires preparation. The key
idea for the algorithm is similar to the concept from Section 4, i.e. the relaxation
to the continuous semantics. First we have to define a continuous version of the
parallel execution, and define its execution time.

Definition 4. For a continuous run πc = β1t1, β2t2 . . . βntn executable from the
initial marking i its continuous parallel execution is a partition of the run into
blocks πc = πc1πc2 . . . πcl such that

1. a single transition cannot appear twice in a single block;
2. for every i ⩽ l holds •Rπci

⩽ {i : 1}+
∑

j<i ∆(πcj).
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The execution time of a single block πci = βi,1ti,1βi,2ti,2 . . . βi,ni
ti,ni

equals
exec(πci) = max(βi,1, βi,2 . . . βi,ni

). The execution time of the continuous paral-

lel run exec(πc1, πc2, . . . πcl) =
∑l

j=1 exec(πcj).

The ideas behind this definition are as follows:

– If βi = 1 for all i ⩽ n it is equivalent to parallel execution with the normal
semantics.

– The execution time of each block, corresponding to a single step of the
system, is equal to the maximal execution time among firings of individual
transitions.

Our next goal is to relate limk→∞
MinTimeN (k)

k and execution times of con-
tinuous parallel executions. Suppose πc is a continuous run of the workflow. Let
execopt(πc) be the minimum of execution times among its continuous parallel
executions.

Lemma 16. limk→∞
MinTimeN (k)

k = inf{execopt(πc) | {i : 1} −→πc

Q≥0
{f : 1}}

Proof. We prove the lemma by showing two inequalities.

(≤) We know that MinTimeN (e)
e ≥ MinTimeN (i·e)

i·e for any i, e ∈ N (see Eq. (3)).

Thus for any run π such that {i : e} −→π {f : e} we have limk→∞
MinTimeN (k)

k ⩽
execopt(π)

e . Thus to prove

limk→∞
MinTimeN (k)

k
≤ inf{execopt(πc) | {i : 1} −→πc

Q≥0
{f : 1}}

if suffices to show that for every πc there are e ∈ N and a run π such that
{i : e} −→π {f : e} and

execopt(π)

e
⩽ execopt(πc).

To prove it, fix πc =
e′1
e1
t1,

e′2
e2
t2, . . .

e′n
en
tn and let ρ1ρ2 . . . ρℓ be its continuous

parallel execution that minimises the execution time. Let e = e1 · e2 · . . . en. It
suffices to define {i : e} −→π {f : e} and its parallel execution of execution time at
most e · execopt(πc) = e ·

∑
1≤i≤ℓ exec(ρi).

The run π will consists of ℓ parts π1 . . . πℓ such that Rπi = Reρi for all
1 ≤ i ≤ ℓ. Note that Reρi ∈ NT by definition of e. We will show that every
part πi can be split into e · exec(ρi) blocks, which will define the desired parallel

execution. Recall that exec(ρi) is the largest
e′j
ej

among the scalings in the block

ρj . Thus e · exec(ρi) is a natural number. We define πi by its parallel execution,
i.e. decomposing it into blocks.

Given a vector v ∈ NT we write v̆ for v̆(t) = 1 if v > 0 and v̆(t) = 0 oth-
erwise. Let v = Reρi . Then the block decomposition is defined by the recursive
procedure f(v) = v̆f(v− v̆), where f(0) = ε. Here by v̆ we understand any run
using its transitions (the order does not matter). Observe that the number of
blocks equals ∥v∥.
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Since every block contains at most one transition it remains to check the
second condition of Definition 2. This follows easily since we know that ρi is
a block and thus •Rρi ⩽ {i : 1} +

∑
j<i ∆(ρj). By scaling both sides of the

inequality by e we get the desired inequality.
(≥) It is sufficient to show that for every run {i : k} −→π {f : k} there is a

continuous run πc such that
execopt(π)

k ≥ execopt(πc). Suppose π = t1t3 . . . tn.
We define πc =

1
k t1,

1
k t2 . . .

1
k tn. The inequality is trivial. ⊓⊔

Now, we focus on computing inf{execopt(πc) | {i : 1} −→πc

Q≥0
{f : 1}}. As the

next step we show that the minimal execution time of a run depends only on
its Parikh image. This fact however requires more insight into the theory of
continuous reachability.

We formulate two lemmas that are essentially proven in [20].

Lemma 17 (Proposition 17 in [20]). Let m,m′ be two markings in QP
≥0

such that m −→π
Q≥0

m′. Then there are two configurations m1 and m2 and three

continuous runs ρ1, ρ2, ρ3 such that:

– m −→ρ1

Q≥0
m1 −→ρ2

Q≥0
m2 −→ρ3

Q≥0
m′,

– Rρ1
+Rρ2

+Rρ3
= Rπ,

– ∀p∈•Rπ
m1(p) > 0,

– ∀p∈R•
π
m2(p) > 0.

Proof. The assumptions of Proposition 17 in [20] require that there is no empty
siphon. This is implied by nonredundancy, which we can assume (see Section 2).
In that formulation we additionally have m1 = m2.

Formally, Proposition 17 in [20] does not deal with ρ3 but this can be easily
adjusted using Lemma 1. ⊓⊔

To formulate the second lemma we need one transformation run(v). Let
T = {t1, t2 . . . tl}.. The transformation takes a v ∈ QT

≥0 and returns a continuous
run run(v) = v(t1)t1,v(t2)t2 . . .v(tl)tl.

Lemma 18 (Lemma 12 in [20]). Let m,m′ be two markings in QP
≥0 and a

vector R ∈ QT
≥0 such that:

– ∆(R) = m′ −m,
– ∀p∈•Rm(p) > 0,
– ∀p∈R•m′(p) > 0.

Then there is n ∈ N such that the run

π =
1

n
run(R)

1

n
run(R) . . .

1

n
run(R)︸ ︷︷ ︸

n

is enabled at m. Precisely m −→π
Q≥0

m′.

Proof. The statement of Lemma 12 in [20] is that m −→∗
Q≥0

m′. However, the

proof is that there is a run like π. ⊓⊔
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Lemma 19. Let R ∈ QT
≥0 be a vector and S = {π | {i : 1} −→π

Q≥0
{f : 1} and Rπ =

R} be a set of continuous runs with the Parikh image R. Let max = ∥R∥ be
the maximal coordinate of the vector R. Let min = inf{execopt(π) | π ∈ S}.
Suppose S is not empty. Then max = min.

Proof. First observe thatmax ⩽ min as we have to execute one of the transitions
max many times and min is well defined as S is not empty. Formally, we show
that max ≤ execopt(π) for any π ∈ S. Suppose that π = ρ1ρ2 . . . ρh is the
optimal partition of π into blocks and that max = R(t). The execopt(π) =∑h

i=1 execopt(ρi) ≥
∑h

i=1 Rρi
(t) = max.

Now we show inequality in the opposite direction, i.e. min ≤ max. It is
sufficient to show a family of runs πε such that execopt(πε) ≤ max + ε for any
ε > 0. First, because of Lemma 17 there are runs and markings {i : 1} −→π1

Q≥0

m1 −→π2

Q≥0
m2 −→π3

Q≥0
{f : 1} where

– Rπ1
+Rπ2

+Rπ3
= R,

– ∀p ∈ •v holds m1(p) > 0,
– ∀p ∈ v• holds m2(p) > 0.

Further, there is δ > 0 such that if we take runs ρ1 = δπ1, ρ2 = (1−δ)π1π2(1−
δ)π3, and ρ3 = δπ3 then {i : 1} −→ρ1

Q≥0
m′

1 −→ρ2

Q≥0
m′

2 −→ρ3

Q≥0
{f : 1} where

– execopt(ρ1) from {i : 1} and execopt(ρ3) from m′
2 are smaller than ε/2,

– Rρ1
+Rρ2

+Rρ3
= R,

– ∀p ∈ •R holds m′
1(p) > 0,

– ∀p ∈ R• holds m′
2(p) > 0.

Now because of Lemma 18 we know that ρ2 can be of the form

ρ2 =
1

n
run(Rρ2)

1

n
run(Rρ2) . . .

1

n
run(Rρ2)︸ ︷︷ ︸

n

.

We claim that for big enough n we can partition it into n blocks 1
n run(Rρ2),

and that this partition is a parallel execution from m′
1 to m′

2. Indeed, it just
suffices to observe that 1

n run(Rρi
) are all blocks.

Further, we have following equality exec(ρ2) = n · exec( 1nrun(Rρ2
)) = n ·

1
n∥Rρ2

∥. We define πε = ρ1ρ2ρ3. Because Rρ2 ≤ R we can write

execopt(πε) ≤ execopt(ρ1) + exec(ρ2) + execopt(ρ3) =

execopt(ρ1) + ∥Rρ2∥+ execopt(ρ3) ≤
1

2
ε+ ∥R∥+ 1

2
ε = max+ ε

(7)

⊓⊔

Theorem 5. For a given nonredundant, generalised sound workflow net N good

for {f : 1} we can compute limk→∞
MinTimeN (k)

k in polynomial time.
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Note that Theorem 4 follows from this theorem. Indeed, if the workflow net
is nonredundant and generalized sound then the net is good for {{f : 1}}. Indeed,
every place can be marked because of nonredundancy and from any reachable
marking it is possible to reach {f : 1}.

Proof (of Theorem 5). First, we can change the problem to computing inf{execopt(πc) |
{i : 1} −→πc

Q≥0
{f : 1}} because of Lemma 16. Next, we can change the problem to

computing inf{∥Rπ∥ | {i : 1} −→π
Q≥0

{f : 1}} because of Lemma 19. Let S be the

set of Parikh images of continuous runs from {i : 1} to {f : 1}. So we rephrase the
previous task and write inf{∥v∥ | v ∈ S}. This is equal to inf{∥v∥ | v ∈ S}, as
∥v∥ is a continuous function.

Since N good for {f : 1}, the set of markings {{f : 1}} satisfies the precondi-
tions of Lemma 8. Thus S = {v | ∆(T )v = {f : 1} − {i : 1}}.

Now, we split S into |T | sets

St = {v | v ∈ S and v(t) ⩾ v(t′) for any t′ ∈ T}.

Observe that v ∈ St if the following system of inequalities Syst is satisfied

Syst := ∆(T )v = {f : 1} − {i : 1} and v(t) ⩾ v(t′) for all t′ ∈ T.

Further, we know that if v ∈ St then ∥v∥ = v(t). So

inf{∥v∥ | v ∈ S} = min
{
inf{v(t) : v ∈ St} : t ∈ T

}
.

We conclude since inf{v(t) : v ∈ St} is a solution of the linear program that
minimises the function f(v) = v(t) subject to Syst. ⊓⊔
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