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Abstract
The deterministic transitive closure operator, added to languages
containing even only two variables, allows to express many natu-
ral properties of a binary relation, including being a linear order, a
tree, a forest or a partial function. This makes it a potentially attrac-
tive ingredient of computer science formalisms. In this paper we
consider the extension of the two-variable fragment of first-order
logic by the deterministic transitive closure of a single binary re-
lation, and prove that the satisfiability and finite satisfiability prob-
lems for the obtained logic are decidable and EXPSPACE-complete.
This contrasts with the undecidability of two-variable logic with the
deterministic transitive closures of several binary relations, known
before. We also consider the class of universal first-order formulas
in prenex form. Its various extensions by deterministic closure op-
erations were earlier considered by other authors, leading to both
decidability and undecidability results. We examine this scenario in
more details.

Categories and Subject Descriptors F.4.1 [Mathematical Logic]:
Computational logic, Model theory; F.4.3 [Formal Languages]:
Decision problems

General Terms Theory

Keywords deterministic transitive closure, two-variable logic, sat-
isfiability problem

1. Introduction

Deterministic transitive closure
The deterministic transitive closure operator plays an important
role in descriptive complexity. In particular Immerman showed in
[11] that on ordered structures first-order logic augmented with this
operator captures LOGSPACE. The operator seems to be attractive
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also for applications in tasks related to verification of hardware
and software, as it can express many natural properties, e.g., when
added to languages containing even only two variables it allows
to say that a binary relation is a linear order, a tree (with reversed
edges), a forest, or a partial function. However, while there are quite
a lot of related works on formalisms which assume that the admis-
sible structures themselves are deterministic, i.e., the out-degree of
their elements is at most one (let us mention here deterministic
propositional dynamic logic [1] and separation logic [4, 28]; re-
garding separation logic see in particular [7] where its two-variable
variant is investigated), there are not too many papers studying the
deterministic transitive closure operator in languages interpreted
over structures not so constrained. We are aware of two such pa-
pers. In the first, [10], Grädel, Otto and Rosen prove that the two-
variable fragment of first-order logic, FO2, becomes undecidable
when augmented with the deterministic transitive closure operator.
In the second, [12], Immerman et al. identify a decidable and NEX-
PTIME-complete logic, namely the class of universal first-order for-
mulas in prenex form with unary relations, one binary relation E,
and positive occurrences of the deterministic transitive closure of
E. The latter paper contains also some contrasting undecidability
results.

Our contribution
The above mentioned papers constitute a starting point for our in-
vestigations. Our main result is that the satisfiability and finite sat-
isfiability problems for FO2 with unary relations, one binary re-
lation E and its deterministic transitive closure are decidable and
EXPSPACE-complete (Thm. 5). Note that this does not contradict
the mentioned undecidability from [10], since to obtain that result
more binary relations and their closures are needed (actually, in
Thm. 19 we argue that already two binary relations and their clo-
sures cause undecidability). In comparison to the decidability result
from [12] we drop the restriction of using deterministic transitive
closures only positively, and we offer unrestricted nesting of exis-
tential and universal quantifiers. The cost is reducing the number
of variables to two, but this is typical for many languages used in
computer science.

We return also to the class of universal formulas in prenex
form considered in [12]. We analyse the impact of the number of
universally quantified variables on the decidability of the extension
by the deterministic transitive closure of a single binary relation.
We show that the variant with two variables has the finite model
property, is decidable and NEXPTIME-complete (Thm. 17), and
with four — undecidable (Thm. 21). The latter sharpens one of
the results from [12]. The case of three variables is solved partially,
by showing undecidability in the presence of an additional binary
relation (Thm. 20).



Related work.
Decidability and the finite model property of basic FO2, over arbi-
trary relational signatures, was shown by Mortimer [24]. Its NEX-
PTIME-completeness follows from the results by Lewis [21] and
Grädel, Kolaitis and Vardi [8]. Since then many natural extensions
of FO2 have been examined. Most of them turn out to have unde-
cidable satisfiability problem (see, e.g., [10, 16]). On the positive
side, FO2 remains decidable when extended by counting quanti-
fiers [9, 26, 27], counting quantifiers and two forests accessible by
their successor relations [5] (finite satisfiability only), a linear order
[25] (or, in the case of finite satisfiability, even two linear orders,
subject to some further restrictions on the signatures, see [29]), one
or two equivalence relations [18, 19], one transitive relation [31]
(general satisfiability only, the case of finite models is open).

Regarding FO2 with variations of transitive closure operators,
the situation is clear in the case of the equivalence closures. In [20]
it is shown that FO2 with the equivalence closure of one binary
relation is NEXPTIME-complete; allowing the closures of two bi-
nary relations lifts the complexity to 2-NEXPTIME, and adding the
closure of a third binary relation leads to undecidability. If we con-
sider the standard transitive closure operator, undecidability can be
obtained if the closures of two relations are available — this fol-
lows from the undecidability of FO2 with two transitive relations
[13, 15]. The case in which the transitive closure of only one bi-
nary relation is available is open, but some partial positive results
are obtained (see Conclusion in [17]).

Since in FO2 +DTC(E) it is possible to say that a model is a
rooted tree, our work is closely related to the work from [2] where
decidability of FO2 over finite trees is considered. In particular,
the results from Section 3.3 imply that satisfiability of FO2 over
infinite unordered trees (with successor and descendant relations)
is EXPSPACE-complete.

The class of universal first-order formulas with constants and
with the standard transitive closure operator was investigated in
[17], where it was shown that in the case of two universally quanti-
fied variables the satisfiability problem is decidable if the transitive
closure of one binary relation is available (it is in 2-NEXPTIME and
2-EXPTIME-hard), and undecidable if we have transitive closures
of two relations. With three variables and the transitive closure of a
single binary relation the problem is undecidable (even if there are
no other non-unary symbols).

2. Preliminaries
2.1 Models
Let E be a binary relation. Let E′ ⊆ E be the relation containing
precisely those pairs (a, b) ∈ E for which (a, c) ∈ E → b = c.
The deterministic transitive closure of E is defined as the tran-
sitive closure of E′. Let L be a fragment of first-order logic. By
L + DTC(E1, . . . ,Ek) we denote the extension of L by the de-
terministic transitive closures of relations E1, . . . ,Ek. Instead of
employing explicitly a special closure operator, we consider signa-
tures containing pairs of binary relation symbols Ei and Ei, and
we admit only structures in which each Ei is interpreted as the de-
terministic transitive closure of the interpretation of Ei.

We usually consider signatures containing arbitrary number of
unary symbols and a single binary relation E together with its
deterministic transitive closureE (equality symbol is also allowed).
Let A be a structure over such a signature. Note that the relation
E ∩ E is a partial function. If A ⊧ E[a, b] ∧ E[a, b] then the
edge (a, b) is called deterministic. A substructure T of A whose
universe is a maximal set of elements such that each distinct pair
of them is related by the symmetric closure of E is called a tree.
(Note that such substructures indeed resemble trees, but their edges

Figure 1. A structure with four trees. From left to right: a cycli-
cally rooted tree, two rooted trees (the second of which consists of
just a root), and a top-unbounded tree. Solid lines denote determin-
istic E-edges, broken lines — nondeterministic ones.

are reversed.) We employ a standard convention and for a structure
A denote by A its universe. Also if B ⊆ A then we denote by
B the substructure induced by B. An element of A such that
A ⊧ ¬E[a, b] for all elements b ∈ A is a root. Note that while
each tree may contain at most one root there may be trees without
a root. We distinguish three classes of trees: A tree T is rooted if it
contains a root; it is cyclically-rooted if it contains a set of elements
a0, . . . , ak−1 such that T ⊧ E[ai, a(i+1) mod k] for all 0 ≤ i < k;
and it is top-unbounded if it is neither rooted nor cyclically-rooted.
Note that a top-unbounded tree T contains an infinite sequence of
distinct elements a0, a1, . . . such that T ⊧ E[ai, ai+1] for i ≥ 0. A
rooted or cyclically-rooted tree may be finite or infinite. See Fig.1
for an illustration of types of trees.

2.2 Two-variable logic
Our main contribution concerns the two-variable logic with the
deterministic transitive closure of a single binary relation E,
FO2 +DTC(E). In this language we can say, e.g., that E is a par-
tial function: ∀xy(E(x, y) → E(x, y)), or that models are rooted
trees (with reversed edges). To do the latter we say that there exists
a unique root: ∃x(R(x) ∧ ∀y(R(y) → x = y) ∧ ∀y¬E(x, y)),
and that all other elements have deterministic paths to the root:
∀xy(R(x) ∧ ¬R(y) → E(y, x)). We can also easily see that our
logic does not have the finite model property, e.g., the formula
∀x(¬E(x,x) ∧ ∃yE(x, y)) has only infinite models.

We are going to present our results for a slightly richer logic,
FO2 +DTC(E) + [∗]. The main reason for introducing this exten-
sion is that it allows to present our proofs in a more structured and
transparent way. Namely, it will allow us to work, to some extent,
on two independent levels: a local level of individual trees and a
global level of connections among different trees (in which the in-
ternal structure of trees is essentially irrelevant). Besides, we be-
lieve that its additional expressive power (in particular the predicate
L) makes it even more attractive.

Formally, we work with signatures of the form τ = τ0 ∪ τs,
where τ0 contains some unary symbols and the binary sym-
bol E, all of which may be interpreted arbitrarily, and τs =
{E,L,Q,R∗,R0,R1,R2} consists of symbols whose interpreta-
tion is fixed. As usually E is the deterministic transitive closure of
E; L is the equivalence closure of E (in other words, A ⊧ L[a, b]
iff a and b belong to the same tree); the unary symbol Q is true
precisely for elements which receive an E-edge from the root of
their tree; the unary symbols R∗,R0,R1,R2 mark roots: a root
is marked with R0 if it has no outgoing E-edges to its own tree
and has at least two outgoing E-edges to the other trees; a root is
marked R1 if it has precisely one outgoing E-edge to its own tree
and has at least one outgoing E-edge to the other trees; a root is



marked R2 if it has at least two outgoing E-edges to its own tree
and has an arbitrary number (possibly zero) of outgoing E-edges
to the other trees. Finally, a root is marked R∗ if it has no outgoing
E-edges at all. We say that a τ -structure in which the interpreta-
tion of the symbols from τs meets the above listed requirements is
admissible. We will write A ⊧ ϕ if A is a model of ϕ in classical
sense, and additionally, it is admissible.

We sometimes consider satisfaction of FO2 +DTC(E) + [∗]
formulas in trees which are intended to become substructures of
admissible structures. While a cyclically-rooted or top-unbounded
tree which is a substructure of an admissible structure must be
admissible itself, it is not necessarily the case for rooted trees, as,
obviously, in a structure consisting of a single tree a root satisfying
R0 orR1 have no other trees to send the required (respectively, two
or one) E-edges. To deal with this subtlety we write T ⊧∗ ϕ, for a
tree T and an FO2 +DTC(E) + [∗] formula ϕ, if T is a model of
ϕ in classical sense and it is either admissible or it contains a root
satisfyingRi (i = 0,1) and would become admissible after emitting
at least 2 − i E-edges (to some other trees) by this root.

2.3 Universal fragment of first-order logic
By ∃∗∧∀∗ we denote the class of all formulas having the following
shape for some natural numbers m,n:

( ⋀
1≤i≤m

∃xψi(x)) ∧ ∀x1 . . . xnψ0(x1, . . . , xn),

where ψi is quantifier-free. We also define in a natural way the re-
strictions with bounded number of universally quantified variables,
and denote them ∃∗ ∧ ∀n, for n ∈ N.

This class is closely related to the fragment considered in [12],
i.e., the class of universal prenex formulas with constants. Even
though we do not explicitly allow constants, their effect can be sim-
ulated by formulas of the form ∃xPc(x) ∧∀xy(Pc(x) ∧Pc(y)→
x = y).

By ∃∗∧∀n + DTC(E1, . . . ,Ek) we denote the extension of
∃∗∧∀n by the deterministic transitive closures of binary relations
E1, . . . ,Ek. Technically, as in the case of FO2, we employ pairs
of binary relation symbols Ei, Ei, and require Ei to be interpreted
as the deterministic transitive closure of Ei. If not stated otherwise
we assume that Ei and Ei are the only non-unary relations.

2.4 Atomic types
An (atomic) 1-type (over a given signature) is a maximal satisfiable
set of atoms or negated atoms with free variable x. Similarly, an
(atomic) 2-type is a maximal satisfiable set of atoms and negated
atoms with free variables x, y. We assume that literals built using
the symbols of fixed interpretation, i.e., the symbols from τs, are
also members of atomic types. Note that the numbers of 1-types
and 2-types are bounded exponentially in the size of the signature.
We often identify a type with the conjunction of all its elements.

For a given τ -structure A, and a ∈ A we say that a realises a
1-type α if α is the unique 1-type such that A ⊧ α[a]. We denote
by tpA(a) the 1-type realised by a. Similarly, for distinct a, b ∈ A,
we denote by tpA(a, b) the unique 2-type realised by the pair a, b,
i.e., the type β such that A ⊧ β[a, b]. We denote byα[A] the set of
all 1-types realised in A. For S ⊆ A, we denote by αA[S] the set
of all 1-types realised in S. The set of all 1-types over a signature
τ is denoted by α[τ].

3. Two-variable logic
3.1 Normal form and plan of the proof
We start this section with an adaptation of the well-known Scott
normal form for two-variable logic [30]. Namely, we separate the
conjuncts concerning the connections inside trees from those con-
cerning the connections between elements from different trees.

We say that an FO2 +DTC(E) + [∗] formula ϕ is in normal
form if ϕ = ϕl ∧ ϕg for some

ϕl = ∀xy(L(x, y)→ ϕl0(x, y))

∧
ml

⋀
i=1

∀x(λli(x)→ ∃y(L(x, y) ∧ ϕli(x, y))),

ϕg = ∀xy(¬L(x, y)→ ϕg0(x, y))

∧
mg

⋀
i=1

∀x(λgi (x)→ ∃y(¬L(x, y) ∧ ϕgi (x, y))),

where λli and λgi are atomic formulas, ϕli and ϕgi are quantifier-free
and do not use the relation symbol L; additionally ϕgi do not use E
(but can use E). We say that ϕl, ϕg are, respectively the local and
global parts of ϕ.

We employ the following standard terminology. Let A be an
admissible structure. We say that an element b is an ith local
(global) witness for an element a if A ⊧ λli[a] (A ⊧ λgi [a]) and
A ⊧ L[a, b] ∧ ϕli[a, b] (A ⊧ ¬L[a, b] ∧ ϕgi [a, b]).

The following lemma can be proved in a standard fashion.

Lemma 1. Let ϕ be an FO2 +DTC(E) + [∗] formula over a sig-
nature τ . Then there exists a polynomially computable normal form
FO2 +DTC(E) + [∗] formula ϕ′ (over a signature τ ′ extending τ
by some fresh unary predicates) such that ϕ is satisfiable iff ϕ′

is. Moreover any model of ϕ can be expanded (by an appropriate
interpretation of symbols from τ ′ ∖ τ ) to a model of ϕ′, and the
restriction of any model of ϕ′ to τ is a model of ϕ.

To some extent, we will work on two independent levels, local
and global. For a given normal form ϕ = ϕl ∧ ϕg , the task on the
local level will be to check if there exist trees T ⊧∗ ϕl meeting
some additional simple requirements; on the global level we will
be interested in satisfaction of ϕg in models in which the internal
structure of trees is essentially irrelevant.

We first announce a lemma whose purpose is to take care of the
above mentioned local task.

Lemma 2. Let α be a set of 1-types over a signature τ . Let ϕl be
a normal form FO2 +DTC(E) + [∗] formula with empty global
part. Then it can be verified in space f(∣α[τ]∣)+ g(∣ϕl∣), for some
fixed polynomial function f and exponential function g, if there
exists a (finite) tree T ⊧∗ ϕl such that α[T] =α.

We postpone the proof of Lemma 2 until Section 3.3, but it
is worth mentioning that if we would be interested only in finite
rooted trees with no nondeterministic edges from the root to its
nodes then we could use the results from [2], where decidability of
FO2 over finite trees (and even finite ordered trees) was shown to be
in EXPSPACE. In full generality we will need however to deal with
both finite and infinite trees and also to consider cyclically rooted
and top unbounded trees.

We concentrate now on developing some tools intended to deal
with our global level tasks.

3.2 Global Level
The main work of this section is done in the following lemma which
shows that a satisfiable formula has a model with small number of
trees. Additionally, a small set of elements can be chosen, suffi-
cient to provide the required global witnesses for all (potentially
infinitely many) elements of the model, and which itself guaran-
tees that the admissibility conditions related to Ri-predicates are
satisfied.

Lemma 3. Let A ⊧ ϕ be a τ -structure, a model of a normal form
FO2 +DTC(E) + [∗] formula ϕ. Then there exists a model A′ ⊧ ϕ



over a signature τ ′ extending τ by polynomially many fresh unary
predicates, and a set B ⊆ A′ of cardinality at most h(∣α[τ]∣), for
fixed polynomial function h such that:
(i) A′ consists of k trees T1, . . . ,Tk, for some k ≤ h(∣α[τ]∣),
(ii) if A′ ⊧ λgi [a] then a has an ith global witness in B,
(iii) if for the root a of a tree Tj ⊆ A′ we have A′ ⊧ Ri[a] (i = 0,1)
then a has at least 2−i E-edges to elements in B∖Tj ,
(iv) if for the root a of a tree Tj ⊆ A′ we have A′ ⊧ R1[a] or
A′ ⊧ R2[a] then a has, respectively, precisely one edge or at least
two edges to elements in Tj ∩B,
(v) all elements from B belonging to the same tree have different
1-types.

Proof. Let us first distinguish subsets B0, B1, B2 in A. This is
done in Steps 0-2 below.
Step 0. For each 1-type α realised in A mark 5 trees containing a
realisation of α (or all such trees if there are less than 5 of them);
in each of them mark 3 realisations of α (or all such realisations if
there are less than three of them). Let B0 be the set of all marked
elements. Note that ∣B0∣ ≤ 15∣α[τ]∣.
Step 1. For each a ∈ B0 chose now a minimal set of elements Ba
securing conditions (i) and (ii) for a, i.e. such that:

(a) a has all the required global witnesses in B0 ∪Ba, and
(b) if a is a root of a tree T ⊆ A such that A ⊧ Ri[a] for i = 0,1

then a has at least 2 − i edges to (B0 ∪Ba) ∖ T .

First we add to Ba elements ensuring (a). Let us see that at most
four elements of each 1-type suffice. Indeed, a fixed pair of 1-
types may be extended to a 2-type in four possible ways, namely
by E(x, y) ∧ E(y, x), E(x, y) ∧ ¬E(y, x), ¬E(x, y) ∧ E(y, x)
or ¬E(x, y) ∧ ¬E(y, x). (Observe also that this maximal number
of options concerns only the case when when both 1-types are
root types, i.e., contain some Ri-predicates, since only roots are
allowed to emit E-edges to other trees. If only one of the types
is a root type then there are two possibilities, if none — just
one possibility: ¬E(x, y) ∧ ¬E(y, x).) Thus an element cannot
require more than 4 global witnesses of the same 1-type. If after
securing property (a) for a property (b) is not satisfied we simply
add to Ba appropriately one or two elements to which a sends a
global E-edge. Let B1 = ⋃a∈B0

Ba. For each a ∈ B0 we have
∣Ba∣ ≤ 4∣α[τ]∣ which implies that ∣B1∣ ≤ ∣B0∣ ⋅ 4∣α[τ]∣.
Step 2. Repeat Step 1 with the role of B0 played by B1. (Note that
in this step the sets Ba can be nonempty only for elements from
B1 ∖ B0.) Let B2 be the set of elements chosen in this step. We
have ∣B2∣ ≤ ∣B1 ∖B0∣ ⋅ 4∣α[τ]∣.

Let B∗ = B0∪B1∪B2. Note that ∣B∗∣ is bounded by 15∣α[τ]∣
+15∣α[τ]∣ ⋅ 4∣α[τ]∣+ 15∣α[τ]∣ ⋅ 4∣α[τ]∣ ⋅ 4∣α[τ]∣ ≤ 315∣α[τ]∣3,
polynomially in ∣α[τ]∣. We modify now some global connec-
tions between A∖(B0∪B1) and B0 so that each element of A ∖
(B0∪B1) has all its required global witnesses in B0, and each root
from A ∖ (B0∪B1) marked by Ri (i=0,1) has at least 2−i edges
to elements in B0 outside its tree. Again this is possible due to our
strategy of choosing B0: Consider an element a ∈ A∖(B0∪B1)
of type α and think about its global requirements with respect to
elements of type α′. Recall that if α′ is realised in A in at least
five trees then we mark five of them. In this case, even if α=α′,
and a is in one of the marked trees it still has at least four ele-
ments of type α′ in B0 outside its tree, which, as explained above,
is sufficient to provide all required global witnesses of type α′ for
a. It is readily verified that if necessary, in parallel with providing
global witnesses, such four realisations of α′ are enough to secure
the global admissibility conditions related to Ri-predicates (i.e., to
absorb one or two E-edges from a). If α′ is realised in less than
five trees in A then amay require more than one element of type α′

in some tree T (in this case α′ is not a root type, since a root type
must be unique in its tree). In the worst case three realisations of α′

in T are required. This happens when both a connection contain-
ing E(x, y) and a connection containing ¬E(x, y) are necessary,
α contains R0(x) and there is no way to realise the admissibility
condition related to R0 other than using another realisation of α′

from T. Recall that in our marking strategy we take this possibility
into account and, if it is possible, we take three realisations of α′ to
B0 from each tree marked as containing realisations of α′.

Let us call the obtained structure A∗. Note that in A∗ the 1-types
of elements and the internal structure of trees from A are retained.
Thus we clearly have A∗ ⊧ ϕl. Obviously after our surgeries we
have A∗ ⊧ ϕg and thus also A∗ ⊧ ϕ.

Let A∗
0 be the substructure of A∗ restricted to those trees which

contain elements from B∗. Our construction guarantees that still
A∗

0 ⊧ ϕ. The set B is obtained by adding to B∗ some minimal
number of elements so that (iv) is true for the trees from A∗

0 . This
can be done by choosing at most two new elements per tree. Finally,
let A′ be obtained from A∗

0 by introducing fresh unary predicates
(forming together with τ the signature τ ′) and making the 1-types
of elements ofB belonging to the same tree different in A∗

0 . Clearly
⌈log2 ∣B∣⌉ (which is polynomial in ∣τ ∣) new predicates suffice.

Let us see that A′ andB are as required. The passage from A∗
0 to

A′ does not influence the satisfaction of ϕ. Thus A′ ⊧ ϕ. Property
(i) follows from the given estimation on the size ofB∗ and from the
observation that expanding B∗ to B can at most treble the number
of elements; (ii) follows from the fact that elements ofB0 have their
witnesses inB1, elements fromB1 — inB2, and elements fromB2

andA′∖B — inB0; (iii) is satisfied owing to our surgeries; for (iv)
we take care in the passage from B∗ to B, and (v) is guaranteed by
colouring elements ofB by means additional unary predicates.

We will need one more technical definition. We say that a tree
T′ safely extends a tree T ifα[T′] =α[T] and if for anyα ∈α[T]
the number of realisations of α in T′ is greater or equal to the
number of realisations of α in T.

Lemma 4. Let ϕ = ϕg be an FO2 +DTC(E) + [∗] normal form
formula with empty local part. Let A ⊧ ϕ be a model consisting of
trees T1, . . . ,Tk. Then for any set of trees T′1, . . . ,T

′
k, such that T′i

safely extends Ti (i = 1, . . . , k) there exists a model A′ ⊧ ϕ whose
domain is the disjoint union of T ′1, . . . , T

′
k, and A′↾T ′i = T′i.

Proof. Let f ∶ T ′i → Ti be an onto function retaining 1-types. For
each a ∈ T ′i , b ∈ T ′j , i /= j, we set tpA′(a, b) ∶= tpA(f(a), f(b)).
All conjuncts of ϕ of type ∀∀ are satisfied in A′ since the 2-types
of pairs of elements from distinct trees are taken from A. It is also
readily verified that all elements have enough global witnesses in
A′ (this follows from the fact that f is onto) and thus that A′ is as
required.

Now we are ready to prove the main result of this paper.

Theorem 5. The satisfiability (finite satisfiability) problems for
FO2 +DTC(E) + [∗] are in EXPSPACE.

Proof. Let ϕ be an FO2 +DTC(E) + [∗] formula over a signature
τ (we assume that τ consists of symbols used in ϕ; thus ∣τ ∣ ≤ ∣ϕ∣).
By Lemma 1 we can assume that ϕ = ϕl ∧ ϕg is in normal form.
To verify if ϕ has a (finite) model we:
(i) guess k, 1 ≤ k ≤ h(∣α[τ]∣), a signature τ ′ ⊇ τ extending τ by
some polynomially many fresh unary predicates, and a sequence
α1, . . . ,αk of sets of 1-types over τ ′;
(ii) for each i (i = 1, . . . , k) verify that there exists a tree (finite
tree) T ⊧∗ ϕl such that α[T ] =αi;
(iii) guess a τ ′-structure A, consisting of trees T1, . . . ,Tk, such that
α[Ti] = αi and Ti contains precisely 1 element of each 1-type



from αi (the internal structure of Ti is not relevant), and verify
that A ⊧ ϕg .

The outlined procedure can be implemented to work in nonde-
terministic exponential space: recall that h is a polynomial function,
and note that ∣α[τ]∣ ≤ 2∣τ ∣, ∣τ ′∣ is polynomial in ∣τ ∣, ∣αi∣ ≤ 2∣τ

′
∣,

and ∣A∣ ≤ k ⋅2∣τ
′
∣; thus all the guesses in (i) and (iii) are of exponen-

tial size. By Lemma 2, checking in (ii) if the appropriate trees exist
can be done in space f(α[τ ′]) + g(∣ϕ∣), for polynomial function f
and exponential g, which is exponentially bounded in ∣ϕ∣.

Finally, verification in (iii) if A ⊧ ϕg can be readily done in time
polynomial in ∣A∣ and ∣ϕg ∣.

We show now that the procedure has a successful run iff ϕ
has a model (finite model). Assume that ϕ has a model (finite
model). Take τ ′, a τ ′-model (finite τ ′-model) A′ ⊧ ϕ and a subset
of its domain B as guaranteed by Lemma 3. Choose the number
k to be the number of trees in A′, and let T′1, . . . ,T

′
k be those

trees. Let αi = α[T ′i ] (for i = 1, . . . , k). Clearly T′i ⊧∗ ϕl,
which ensures that the verification in (ii) will be successful. Let
B′ ⊇ B be such that for each i = 1, . . . , k the set T ′i ∩B′ contains
precisely one realisation of each type realised in T ′i (this is possible,
since by condition (v) of Lemma 3 the types realised in T ′i ∩ B
are distinct). Let A be a structure with domain B′, retaining the
1-types of elements, and the 2-types of pairs of elements from
distinct trees from A′, such that the universes of its trees are T ′i ↾
B′ (the internal structure of trees is irrelevant, but note that the
admissibility conditions on the roots marked with Ri predicates
can be satisfied due to conditions (iii) and (iv) of Lemma 3). It is
readily verified that A ⊧ ϕg as required in (iii).

In the opposite direction, assume that there is a successful run of
the procedure. Let k, τ ′, α1, . . .αk, A ⊧ ϕg and T1, . . . ,Tk be as
guessed during this run. Let T′1, . . . ,T

′
k be trees (finite trees) such

that T′i ⊧ ϕl and α[Ti] = αi (for i = 1, . . . , k), as guaranteed
by step (ii). Clearly T′i safely extends Ti (for i = 1, . . . , k). Let
A′ ⊧ ϕg be a model built from the trees T′i, as guaranteed by
Lemma 4. As each of its trees satisfies ϕl we get that A′ ⊧ ϕ.
This finishes the proof.

A matching EXPSPACE-lower bound follows from EXPSPACE-
hardness of FO2 over (unordered) trees [2], which in turn is a
consequence of the construction in [14]. Thus we get the following
corollary.

Corollary 6. The satisfiability and finite satisfiability problems
for FO2 +DTC(E) and FO2 +DTC(E) + [∗] are EXPSPACE-
complete.

3.3 Local Level
In this section we are going to prove Lemma 2. The main result
from [2] (see also [6] and [3]) is strong enough to check satisfi-
ability of local formulas over finite rooted trees. The main contri-
bution of this section is extending the technique we used in [6] in
the case of finite rooted trees to handle infinite, cyclically-rooted or
top-unbounded trees.

3.3.1 Preliminaries
To simplify our task we assume w.l.o.g. that if a tree T has a root
then the root has no outgoingE-edge. Recall that generally a rooted
tree may have some edges from the root to its nodes (marked byQ),
and moreover, in the case of roots marked with R1 or R2 it even
must have such edges. These edges need not however be explicitly
considered, since they can be simulated by employingQ and a fresh
unary predicate V . We replace in ϕl every occurrence of E(x, y)
by E(x, y) ∨ (R1(x) ∨R2(x)) ∧Q(y), and add to ϕl conjuncts
which take care of the consistency between Ri root markers and

the number of realisations of Q as follows.

∀x(R1(x)→ ∃y(L(x, y) ∧Q(y) ∧ V (y)))
∀x(R2(x)→ ∃y(L(x, y) ∧Q(y) ∧ V (y)))
∀x(R2(x)→ ∃y(L(x, y) ∧Q(y) ∧ ¬V (y)))
∀xy(L(x, y)→ (Q(x) ∧Q(y) ∧ V (x) ∧ V (y)→ x = y))
∀xy(L(x, y)→ (R1(x) ∧Q(y)→ V (y)))
∀xy(L(x, y)→ (R∗(x) ∨R0(x)→ ¬Q(y))).

Moreover, in an admissible model any pair of elements from a
tree is connected by L, thus for our current purposes predicate L is
irrelevant and we assume that it is not used (just replace each atom
built of L by true). Further, we may add a conjunct stating that
there is at most one element satisfying a root marker. The above
assumptions allow us to consider only the following admissibility
conditions in this section: E is the deterministic transitive closure
of E, all edges are deterministic and a model is a single tree.
For simplicity, we will write T ⊧ ϕ if ϕ is satisfied in a model
T admissible in the above sense (instead of technically correct
T ⊧∗ ϕ).

Now we adapt some notions from [6]. We use x/∼y to abbreviate
the formula stating that x and y are in free position, i.e., the formula
x/=y ∧ ¬E(x, y) ∧ ¬E(y, x). Let us call the formulas specifying
the relative position of a pair of elements in a tree with respect to
binary predicates order formulas. There are ten possible order for-
mulas. Four of them specify a relative position of two distinct ele-
ments of the cycle in a cyclically-rooted tree: all these formulas are
conjunctions of E(x, y) ∧E(y, x) and one of E(x, y) ∧E(y, x),
E(x, y)∧¬E(y, x), ¬E(x, y)∧E(y, x) or ¬E(x, y)∧¬E(y, x).
We denote these formulas resp. by θC↑↓, θ

C
↑ , θ

C
↓ and θC↟↡ . The re-

maining formulas are E(x, y) ∧ ¬E(y, x) ∧ E(x, y), E(y, x) ∧
¬E(x, y) ∧E(y, x), E(x, y) ∧ ¬E(y, x) ∧ ¬E(x, y), E(y, x) ∧
¬E(x, y) ∧ ¬E(y, x), x/∼y, x=y. They are denoted, resp., as: θ↑,
θ↓, θ↟, θ↡, θ/∼, θ=. Let Θ be the set of these ten formulas.

A full type is a function ᾱ ∶ Θ → P(α[τ]). We employ the
following convention: for a given full type ᾱ we denote by α the
unique member of ᾱ(θ=). For a given tree T, and v ∈ T , we denote
by ftpT(v) the full type realised by v, i.e., the unique full type
ᾱ, such that α is the 1-type of v, and for all θ ∈ Θ we have that
ᾱ(θ) = {tpT(w) ∶ T ⊧ θ[v,w]}.

A reduced type is a tuple ⟨α,A,B,F ⟩, where α is a 1-type
and A,B,F are sets of 1-types. Reduced types are used to keep
information recorded in full types in a (lossy) compressed form.
We will use reduced types only in the context of elements that
are not on a cycle, so in particular we ignore the components
corresponding to the four θC formulas. Let v be a node in T such
that v is not on a cycle and ftpT(v) = ᾱ. By rftpT(v) we denote
the reduced type realised by v, i.e., the reduced type ⟨α,A,B,F ⟩,
such that A = ᾱ(θ↑) ∪ ᾱ(θ↟), B = ᾱ(θ↓) ∪ ᾱ(θ↡) and F = ᾱ(θ/∼).
Note that α denotes the 1-type of v, and, informally speaking, A
is the set of 1-types of elements realised above v, B is the set of
1-types of elements realised below v, and F is the set of 1-types of
the elements realised in free position to v. We will refer to the sets
A,B and F as the θ↑+ , θ↓+ and θ/∼ components of the reduced type.

We introduce a binary relation ⪯ on reduced types as follows.
⟨α,A,B,F ⟩ ⪯ ⟨α′,A′,B′, F ′⟩ if (B ⊆ B′) ∧ (A′ ⊆ A) ∧ (F ′ ⊆
F ). Technically speaking, this relation on types is a preorder, but
restricted to triples ⟨A,B,F ⟩ this is (a finite and thus a well-
founded) order. Note that chains in this order are of at most expo-
nential length. Reduced types ρ and ρ′ such that ρ ⪯ ρ′ and ρ′ ⪯ ρ
are called equivalent.

A pseudo root in a cyclically-rooted tree T is any node on the
cycle in T; in a top-unbounded tree it is a node with a maximal



wrt. ⪯ reduced type. Note that in a top-unbounded tree each path
contains only pseudo roots from some point on.

Local normal form We say that a local formula ϕ is in local
normal form if

ϕ = ∀xyχ(x, y) ∧⋀
i∈I

∀x(λi(x)⇒ ∃y(ηi(x, y) ∧ ψi(x, y))),

for some index set I , where χ(x, y) is quantifier-free, λi(x) is
an atomic formula a(x) for some unary symbol a, ψi(x, y) is
a boolean combination of unary atomic formulas, and ηi(x, y)
is an order formula. Note that in χ the equality symbol may be
used, e.g., we can enforce that a model contains at most one node
satisfying P : ∀xy(P (x)∧P (y)⇒ x=y). The local part ϕl of any
FO2 +DTC(E) + [∗] formula can be transformed into a formula
in local normal form that is equivalent to ϕl on all trees in a
standard way.

For a given formula ϕ in local normal form and a full type ᾱ,
we say that ᾱ is ϕ-consistent if an element realising ᾱ cannot be
a member of a pair violating the universal conjunct ∀xyχ(x, y) of
ϕ, and has all witnesses required by ϕ. Formally, ᾱ is ϕ-consistent
if for every θ ∈ Θ, and every α′ ∈ ᾱ(θ) we have α(x) ∧ α′(y) ∧
θ(x, y) ⊧ χ(x, y) ∧ χ(y, x), and for every conjunct ∀x(λi(x)⇒
∃y(L(x, y)∧ ηi(x, y)∧ψi(x, y))) of ϕ, such that α(x) ⊧ λi(x),
there exists a 1-type α′ ∈ ᾱ(ηi) such that α(x), α′(y) ⊧ ψi(x, y).
A proof of the following proposition is straightforward.

Proposition 7. Let T be a tree and let ϕ be a formula in local
normal form. Then T ⊧ ϕ iff every full type realised in T is ϕ-
consistent.

We say that a full type ᾱ is combined of two full types ᾱ1 and
ᾱ2 if α=α1=α2 and for each θ ∈ Θ we have ᾱ(θ) = ᾱ1(θ) or
ᾱ(θ) = ᾱ2(θ). Also the following fact is immediate.

Proposition 8. Let ϕ be a formula in local normal form, and let ᾱ
be a full type combined of two ϕ-consistent full types ᾱ1, ᾱ2. Then
ᾱ is ϕ-consistent.

3.3.2 Short cycles and small degree
In the following we will argue that we can bound the length of
cycles in cyclically-rooted trees and the degree of nodes in all trees
that are models of local formulas. We start by showing how to
shorten a path in a model — we will use it later in the construction
of gadgets, but we show it here because it is conceptually simpler
then shortening cycles.

Lemma 9. Let ϕ be a formula in local normal form, T its model,
and v,w ∈ T two nodes of T, such that T ⊧ E(w, v). If u, v are
not elements of a cycle in a cyclically-rooted tree and rftpT(v) =
rftpT(w), then the tree T′, obtained from T by replacing the
subtree rooted at v by the subtree rooted at w, is a model of ϕ.

Proof. It can be verified that for every u ∈ T ′, if u/=w then
ftpT′(u) = ftpT(u), and that ftpT′(w) is combined of ftpT(v)
and ftpT(w). Thus, by Propositions 7 and 8, all types realised in
T′ are ϕ-consistent, and T′ ⊧ ϕ.

Shortening a cycle requires a bit more care than shortening
a path, but it can be done in a very similar way.

Lemma 10. Let ϕ be a formula in local normal form, T its
cyclically-rooted model. Then there exists a cyclically-rooted tree
T′ such that T′ ⊧ ϕ and the cycle in T′ has at most exponential
length. Moreover T′ can be obtained by removing from T some
number of elements (together with the subtrees rooted at them).

Proof. Let C (the cycle) be the set of all pseudo roots in T and let
α =αT[C] be the set of 1-types of elements inC. We are going to

mark some important elements of C and then remove some paths
on C connecting elements of the same 1-type and not containing
marked elements, thus producing a model T′ ⊧ ϕ. For all c ∈ C let
Tc be the subtree of T obtained by first removing from T all edges
connecting elements from C and then taking the subtree rooted at
c. For α ∈α let Cα be the set of pseudo roots in C of 1-type α and
let C′

α be the set of pseudo roots in C such that tree Tc contains
a non-root element of 1-type α.

For each α mark min(2, ∣C′
α∣) elements in C′

α. Additionally
mark some elements in C such that for each α ∈α there is at least
one marked element of 1-type α. There are now at most 3∣α[τ]∣
marked elements.

If there exist two non-marked elements v,w ∈ C such that (i)
tpT(v) = tpT(w), (ii) the distance from w and v to the closest
marked element is at least 2, and (iii) the path π from v to w
contains no marked elements, then path π can be shortened (i.e., all
nodes c between v and w, including v and excluding w, together
with subtrees Tc, can be removed from T). Let T′′ be the structure
obtained from T by this shortening.

Observe that ftpT′′(w) is combined of ftpT(v) and ftpT(w)
(this is obvious for θC↑ and θC↓ and the six components not related to
the cycle; θC↑↓ component is empty in both types and θC↟↡ component
equals α in both types), so it is ϕ-consistent. It can be verified that
for every u ∈ T ′′, if u/=w then ftpT′′(u) = ftpT(u): this is quite
obvious for all θ components of full types for θ ∈ Θ ∖ {θ/∼}; in
the case of θ/∼ component, the non-root nodes of 1-type α below
elements in C′

α guarantee existence of all needed free witnesses,
which implies the equality of θ/∼ components of full types. Thus,
by Propositions 7 and 8, all types realised in T′′ are ϕ-consistent,
and T′′ ⊧ ϕ. By repeating this shortening we obtain a cyclically-
rooted tree T′ with a cycle of at most exponential length.

Our final observation in this subsection is that to provide all
witnesses for ∀∃ conjuncts of ϕ we only need nodes with at most
exponential degree.

Lemma 11. Let ϕ be a formula in local normal form and let
T ⊧ ϕ. Then there exists a model T′ ⊧ ϕ in which the number
of predecessors of each node is bounded by 4∣α[T]∣. Moreover
T′ can be obtained by removing from T some number of elements
(together with the subtrees rooted at them).

Proof. As in the previous lemma we are going to mark some im-
portant elements and remove trees rooted at unmarked elements.
First, in the case of cyclically-rooted trees and top-unbounded trees
we choose some pseudo root r and we mark all nodes on the path
starting in r. Then we repeat the following procedure.

We choose a (marked) node v in the structure and the set of its
predecessors V . Let Vα be the set of elements from V of 1-type α
and let V ′

α be the set of elements e ∈ V such that the tree Te rooted
at e contains a non-root element of 1-type α. For each α we mark
min(2, ∣Vα∣) elements in Vα and min(2, ∣V ′

α∣) elements in V ′
α, and

remove from T the subtrees rooted at all unmarked elements in V .
We repeat this procedure inductively infinitely many times,

starting from the chosen pseudo root and following to all predeces-
sors of the processed node. In the case of top-unbounded trees we
also follow in the inductive step the chosen path to the successors
of processed nodes. Then T′ is the structure obtained in the limit
(it is the intersection of all intermediate structures processed in all
iterations of the procedure). Obviously T′ is nonempty (it contains
the initial pseudo root). It can be verified that for every u ∈ T ′ the
types ftpT′(u) and ftpT(u) are equal, so by Proposition 7 all types
realised in T′ are ϕ-consistent, and T′ ⊧ ϕ.



3.3.3 Gadgets
Let G be a finite pointed graph (a graph with a distinguished node
called root). By unfolding of G we mean a tree TG obtained from
G by the following procedure.

• The root of TG is a node corresponding to the root of G,
• if v′ is a node in TG corresponding to a node v in G and v has

immediate predecessors v1, . . . , vn in G then v′ has n prede-
cessors v′1, . . . , v

′
n corresponding respectively to v1, . . . , vn.

Figure 2 shows an example of a graph (on the right) and its unfold-
ing (on the left). Note that the procedure above does not unfold the
successors of the root — this is done on purpose, to correctly han-
dle gadgets for cyclically-rooted trees. However, to correctly handle
top-unbounded trees we will also need gadgets where the succes-
sors of the root are unfolded, too. We will refer to such gadgets
explicitly as top-unbounded gadgets.

Definition 12 (Gadget). Let ρ be a reduced type. A ρ-gadget is
a finite pointed graph G such that replacing in any model the
subtree rooted at any element of type ρ by the unfolding ofG results
in a model.

Note that unfoldings of gadgets may be used only at nodes that
are roots of subtrees. They cannot be used to replace substructures
of cyclically-rooted trees at cycle nodes.

Lemma 13. Letϕ be a formula in local normal form and let T ⊧ ϕ.
If ρ is a reduced type realised in T then there exists a ρ-gadget.

Proof. Our construction of the gadget employs well-founded in-
duction wrt. ⪯. Note that if a node in T is a leaf then the θ↓+ com-
ponent of its reduced type is empty, so when T has leaves, the in-
duction starts in a leaf with maximal components θ↑+ and θ/∼ in the
reduced type. But T does not have to have a leaf.

For the induction step (which in the case of well-founded in-
duction includes the induction basis) take any element e of arbi-
trary reduced type ρ = ⟨α,A,B,F ⟩ and assume that for all types
ρ′ that are strictly smaller than ρ (according to ⪯) the ρ′-gadgets are
already defined.

Since e has a reduced type, it is not an element of a cycle and
there exists the subtree Te of T rooted at e. We start by finding
important nodes in Te. Let I = {α1, . . . , αk} be the set of 1-types
such that for all i ∈ {1, . . . , k} the types ⟨αi,A,B,F ⟩ are realised
in Te strictly below the root e. For each of these types choose an
element ei in Te such that ei ≠ e and rftpT(ei) = ⟨αi,A,B,F ⟩.
Let B = {α1, . . . , αl} for some l ≥ k. For all i ∈ {1, . . . , k} and
j ∈ {1, . . . , l} we find an element ei,j that is below ei and has
1-type αj .

Let S be the least subtree of T that

• contains e,
• contains all nodes ei,j for i ∈ {1, . . . , k} and j ∈ {1, . . . , l}, and
• contains all immediate predecessors (in T) of all nodes that are

not leaves of S.

The ρ-gadget is obtained by removing leaves from S according to
the following rules.

• Leaves of types strictly smaller than ρ are replaced with their
respective gadgets, and

• leaves of type equivalent to ρ (that is, of type ⟨αj ,A,B,F ⟩) are
removed and the arrows leading from them are replaced with
arrows from ej .

To see that the constructed graph G is a ρ-gadget we have
to show that replacing in any model the subtree rooted at any
element of type ρ by the unfolding of G results in a model. By

Propositions 7 and 8 it is enough to show that the construction
preserves reduced types of corresponding nodes in both structures.
This can be proved by a simple induction on the structure of the
subtree S.

Example 14. The left part of Figure 2 shows an example of an
infinite tree with root of reduced type ⟨α1,∅,{α1, α2, α3},∅⟩.
The most interesting nodes in this tree are the black ones, let us
call them n1 and n2, respectively of type ρ1 = ⟨α2,{α1, α2, α3},
{α2, α3},{α1, α2, α3}⟩ and ρ2=⟨α2,{α1, α2, α3},{α1, α2, α3},
{α1, α2, α3}⟩. After constructing the gadgets for leaves (which
are graphs consisting of single nodes of type α1), the type ρ1 is
a minimal according to ⪯ unprocessed reduced type; note that all
nodes below n1 have the type equivalent to ρ1. We choose n1 as a
representative of all these nodes (the element e in Lemma 13) and
construct a ρ1-gadget, which is the subgraph (of the graph on the
right of Figure 2) rooted at the black node. Similarly we choose n2

as a representative of types equivalent to ρ2 (which is a minimal
type of non-leaf nodes in the right branch of the tree) and construct
a respective ρ2-gadget. Then by processing nodes above n1 and n2

we construct a gadget for the whole structure shown on the right.

α3 α3 α3 α3α1 α1

α3 α3 α3 α3α1 α1

α3 α3 α3 α3α1 α1

α2 α2 α2 α2

α2 α2 α2 α2

α2 α2 α2 α2

α1 α1

Figure 2. An infinite model T and a gadget.

Let G be a ⟨α,A,B,F ⟩-gadget. We define a skeleton of G
as the set of nodes equivalent (according to ⪯) to the root of G.
By shortening long paths in a gadget in the same way as we did
in Lemma 9 (more precisely: nodes e, ei and ei,j are important,
branching nodes on paths between important nodes are important;
any path between important nodes may be required to consist of
nodes of different reduced types) we obtain the following lemma.

Lemma 15. Letϕ be a formula in local normal form and let T ⊧ ϕ.
If ρ is a reduced type realised in T then there exists a ρ-gadget G
such that each sub-gadget of G has the skeleton of size at most
exponential in the size of the formula ϕ.

3.3.4 Graph representations of trees
A graph representation of a rooted tree with root of reduced type
ρ is a ρ-gadget. A graph representation of a cyclically-rooted tree
T is a graph obtained from T by replacing all nodes that are im-
mediately below the cycle but not on the cycle by their correspond-
ing gadgets. In the case of top-unbounded trees the construction
of graph representation is a bit more complicated, as the following
lemma shows.

Lemma 16. Let ϕ be a formula in local normal form and let T
be a top-unbounded tree such that T ⊧ ϕ. Then there exists a top-
unbounded gadget G whose unfolding is a model of ϕ. Moreover,
each sub-gadget of G has the skeleton of size at most exponential
in the size of the formula ϕ.



Proof. Let e be a pseudo root in T and let rftpT(e) = ⟨α,A,B,F ⟩
be the reduced type of e. Let A = {α1, . . . , αn} and F =
{β1, . . . , βm}. Let π be the unique infinite path going upwards
and starting in e. Choose nodes e1, . . . , en on path π, of 1-types
α1, . . . , αn, respectively. Choose nodes f1, . . . , fm in free position
to e, of 1-types β1, . . . , βm, respectively. Let e′1, . . . , e

′
m be the first

nodes on path π that are above f1, . . . , fm, respectively. Let e′ be
a node on path π of 1-type the same as 1-type of e and above all
these nodes. The nodes e, e1, . . . , en, e

′
1, . . . , e

′
m, e

′ are important
and there are at most exponentially many of them. Now remove
long paths between important nodes and replace an edge leading
to e′ by an edge leading to e, obtaining a cycle of exponential size,
as in the case of cyclically-rooted trees. Now add gadgets for the
predecessors of the cycle as in a graph representation of cyclically-
rooted trees, with a little bit more care not to remove the nodes
f1, . . . , fm from the gadgets. The top-unbounded unfolding of the
obtained graph is a model of ϕ: the nodes below the pseudo-root
behave like in the case of trees; for the nodes on the unfolding of
the cycle, going upwards to a node corresponding to ei we obtain
an above-witness of type αi and going first upwards to a node cor-
responding to e′j and then downwards to a node corresponding to
fj we obtain a free-witness of type βj . Below-witnesses can be
found below the pseudo-root e.

Now we are ready to prove Lemma 2. To check whether a lo-
cal formula ϕ is satisfiable we check if there exists a graph rep-
resentation G of its model. We start by guessing the type of the
model (rooted, cyclically-rooted or top-unbounded). In the case of
cyclically-rooted and top-unbounded trees we then guess the cycle
together with all its predecessors; in the case of rooted trees we just
guess a root. Every time when we guess a new node we also guess
its full type and we check that it is ϕ-consistent and locally con-
sistent with full types of its immediate neighbours. Then for each
node that is not on a cycle, we guess its reduced type ρ and check
that there exists a ρ-gadget. Checking existence of a ρ-gadget can
be done by guessing a skeleton of exponential size and in each leaf
universally checking that there exist respective sub-gadgets. Note
that by Lemma 11 there are at most exponentially many leaves,
the sub-gadgets have types strictly smaller according to ⪯ and all
chains in ⪯ are exponentially bounded. Taking into account that the
skeletons are of exponential size and while checking sub-gadgets
we have to remember only the skeleton of the currently processed
gadget, the whole procedure runs in alternating exponential time.
Since AEXPTIME=EXPSPACE, checking satisfiability of local for-
mulas is in EXPSPACE. Let T be the structure obtained by unfold-
ing of G. To ensure that α[T] = α it is enough to check that the
types occurring on the cycle (if T is cyclically-rooted) are members
of α and that for every reduced type ⟨α,A,B,F ⟩ occurring in any
gadget the union {α} ∪A ∪B ∪ F equals α. For finite satisfiabil-
ity it is enough to put additional restriction on gadgets (not to be
confused with graph representations) that they must be acyclic.

4. Universal fragment of first-order logic
In [12] it is shown that the logic ∃∗ ∧ ∀∗ extended by positive
occurrences of the deterministic transitive closure of E has the
finite model property and that its satisfiability problem is NEX-
PTIME-complete. It is also argued that allowing negative occur-
rences of DTC of E leads to undecidability. In this section we give
another look at this logic. We will be interested in its fragments
with bounded number of universally quantified variables, ∃∗∧∀k+
DTC(E). In subsection 4.1 we observe that ∃∗ ∧ ∀2 + DTC(E)
retains the finite model property and NEXPTIME-completeness
of the satisfiability problem, even if the closures of E are used
both positively and negatively. (As this logic is a fragment of
FO2 +DTC(E) decidability follows from Section 3. Recall how-

ever that full FO2 +DTC(E) does not have the finite model prop-
erty and that its satisfiability problem is EXPSPACE-complete.) In
subsection 4.2 we discuss related undecidability results.

4.1 Finite model property for ∃∗ ∧ ∀2 +DTC(E)
Theorem 17. ∃∗ ∧∀2 +DTC(E) has an exponential model prop-
erty. Thus its satisfiability and finite satisfiability problems are
NEXPTIME-complete.

Proof. Let ϕ = (⋀1≤i≤m ∃xψi(x)) ∧ ∀xyψ0(x, y) be a satisfiable
∃∗ ∧ ∀2 + DTC(E) sentence over a signature τ . Since ϕ belongs
to FO2 +DTC(E) we may convert it to normal form from Section
3.1. Let ϕ′ be the resulting formula over an extended signature τ ′.
Let A′ ⊧ ϕ′ and B ⊆ A′ be as guaranteed by Lemma 3. Let A be
the restriction of A′ to τ . By Lemma 1 we have A ⊧ ϕ. Let us recall
the properties ensured by Lemma 3 (namely by parts (i), (iii) and
(iv) of this lemma) important in our current scenario:

(i) the number of trees in A and the size of B are exponentially
bounded in ∣ϕ∣,

(ii) if an element of A emits at least two edges then it emits at least
two edges to elements in B.

Let ci (1 ≤ i ≤ m) be an element such that A ⊧ ψi[ci], and let
C = ⋃1≤i≤m{ci}. For any a, b ∈ B∪C letPab be the set of elements
on the deterministic path from a to b if such a path exists in A, and
the set {a, b} otherwise. Let B′ = ⋃a,b∈B∪C Pab. Clearly B ⊆ B′.
Let B′ = A↾B′ (we assume that when taking this restriction, E
and E are treated as usual relational symbols; generally in such
restrictions it is possible that E is not the deterministic transitive
closure of E; as we will explain in a moment, this is not the case
this time). Note that B′ is a finite structure.

We claim that B′ ⊧ ϕ. Indeed, the existential statements are
satisfied due to the elements fromC, and B′ ⊧ ∀xyψ0(x, y), since
B is a substructure of A. It remains to see thatE is the deterministic
transitive closure of E in B′. The crucial observation is that

(⋆) an edge (a, b) is deterministic in B′ iff it is deterministic in A.

This statement follows from the fact that if an element emits at most
one E-edge in A then it cannot emit more in its substructure, and
that if an element emits at least two E-edges in A then it still emits
at least two in B′ by (ii). Take arbitrary a, b ∈ B′. If tpB′(a, b)
contains E(x, y) then there is a deterministic path from a to b in
A. This path must be a fragment of one of the paths Pa′b′ added to
B′ (or a whole such path), thus there is a deterministic path from a
to b in B′. If tpB′(a, b) does not containE(x, y) then there cannot
be a deterministic path from a to b in B′, since by (⋆) such a path
would be also deterministic in A.

B′ may still be very large, however it can be now simply
decreased to the required size. This can be done as in the proof
of Theorem 4 from [12]. Let us call elements of B ∪ C and the
elements in which some paths Pab meet important. Note that the
number of important elements is exponentially bounded in ∣ϕ∣. A
fragment of a path with no important elements can be shortened in
such a way that it contains at most one realisation of each 1-type.
This leads to an exponentially bounded model.

Our construction implies the NEXPTIME-upper bound on the
satisfiability (= finite satisfiability problem). A matching lower
bound follows from the proof of Thm. 5 in [12].

4.2 Limits of decidability
A natural question appears if the decidability result from Thm. 17
can be extended by allowing more variables or more binary rela-
tions whose DTC can be used. This section is devoted to a dis-
cussion on this topic. Some related undecidability results were ob-



tained already in [12]. They are gathered in the following theorem.
The superscripts +,− are used with DTC to denote that only positive,
respectively negative occurrences of DTC are allowed.

Theorem 18. The satisfiability and finite satisfiability problems
are undecidable for:

(a) ∃∗ ∧ ∀4 +DTC+(E1,E2) (Thm. 7 in [12])
(b) ∃∗ ∧ ∀4 + DTC+(E) with one additional binary predicate B

(Thm. 8 in [12])
(c) ∃∗ ∧ ∀5 +DTC−(E) (Thm. 13 in [12]).

Moreover ∃∗ ∧ ∀3 + DTC−(E) does not have the finite model
property (Prop. 11 in [12]).

Additionally, Cor. 10 in [12] suggests a stronger variant of
Thm. 18(a), namely the undecidability of ∃∗∧∀2+DTC+(E1,E2).
However, the statement of that corollary is unclear, and no formal
proof is given. It seems to us that to get the desired effect one
needs to take DTC not over one additional formula γ but over
at least several additional formulas γi. This translates to using
DTC of several binary relations. Nevertheless, if we do not insist
on using DTC only positively the undecidability of ∃∗ ∧ ∀2 with
DTC of two relations can be obtained in a slightly different way.
In [22] (see also [23], p. 67) it is shown by a reduction from the
Post Correspondence Problem that FO2 with unary relations, two
linear orders and their induced successor relations is undecidable.
We can naturally translate this proof to our scenario, with E1, E2

corresponding to the successor relations, and their deterministic
transitive closures corresponding to the order relations. (To enforce
that Ei is a finite linear order it suffices to say that there is an
element a with in-degree 0, there is an element b with out-degree
0, and that any other element is accessible by a deterministic path
from a and can access b by a deterministic path.) Actually, the
proof in [23] uses some nested existential quantifiers, but it is
not difficult to get rid of them. A closer inspection shows that
indeed all the required properties can be expressed by using a
∃∗ ∧ ∀2 +DTC(E1,E2) formula. Thus we get:

Theorem 19. The satisfiability and finite satisfiability problems for
∃∗ ∧ ∀2 +DTC(E1,E2) are undecidable.

Thm. 18(b) can be easily improved by reducing the number of
variables to 3. The proof from [12] defines a snake-like determin-
istic E-path through a finite grid, and then uses four variables to
enforce the remaining edges of the grid, represented by an addi-
tional relation B, by closing squares formulas. If we add to our
grid diagonal B-connections, then a similar effect may be obtained
with employing only three variables and closing triangles formulas.
This allows to state:

Theorem 20. The satisfiability and finite satisfiability problems
for ∃∗ ∧ ∀3 +DTC+(E) with one additional binary symbol B are
undecidable.

It is worth commenting that the proof of Thm. 17 can be easily
adapted to handle other binary symbols besides E (but not their
deterministic transitive closures), which contrasts with the above
theorem. Finally, let us sharpen Thm. 18(c).

Theorem 21. The satisfiability and the finite satisfiability problems
for ∃∗ ∧ ∀4 +DTC−(E) are undecidable.

Proof. Our proof incorporates the idea of enforcing an infinite
path by means of negative occurrences of DTC from the proof of
Thm. 18(c) given in [12]. However, our idea slightly differs from
the ideas there and is a bit more straightforward, in particular we
avoid using special gadgets defined in [12].

We consider first the general satisfiability problem. We describe
a reduction from the undecidable octant tiling problem. The desired
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Figure 3. A fragment of the octant grid used in the proof of
Thm. 21. Thick lines denote connections among the three initial
nodes. Broken lines are those enforced by (iii) and (iv). Solid lines
are enforced by (ii).

infinite octant grid structure is illustrated in Fig. 3. We use unary
predicates Ri and Ci, 0 ≤ i ≤ 3, intended to mark respectively
rows and columns 4k+ i, for k ∈ N. The bottom row is additionally
indicated by the predicate L. The upmost elements in the columns
are marked by D. Moreover, predicates P0, P1, P2 distinguish the
three initial elements, which will be referred to as c0, c1, c2. To
define this structure we write a formula

Φ = ⋀
i=0,1,2

∃xPi(x) ∧ ∀xyzt ϕ(x, y, z, t)

where ϕ states:
(i) Each Pi is realised precisely once. The elements ci satisfying
Pi are appropriately marked by the remaining unary predicates and
connected by E (as in Fig. 3, bold edges).
(ii) There are no deterministic edges:

E(x, y)→ ¬E(x, y).
(iii) Triangles and squares from the picture are appropriately closed
(by horizontal broken edges). E.g.:

(D(x) ∧R3(x) ∧C3(x) ∧D(y) ∧R0(y) ∧C0(y)
∧R3(z) ∧C0(z) ∧E(x, y) ∧E(y, z))→ E(z, x),
(R2(x) ∧C3(x) ∧R3(y) ∧C3(y) ∧R3(z) ∧C0(z)

∧R2(t) ∧C0(t) ∧E(x, y) ∧E(z, y) ∧E(z, t))→ E(t, x).
(Some formulas of this type take into account also the bottom row
marker L.)
(iv) Appropriate elements from the diagonal and from the bottom
row are connected to P0 (bent edges):

D(x) ∧ (C0(x) ∨C2(x)) ∧ P0(y)→ E(x, y),
L(x) ∧ (C1(x) ∨C3(x)) ∧ P0(y)→ E(x, y).

(v) Predicates D and L are appropriately propagated (from left to
right). E.g.:

E(x, y) ∧R1(x) ∧C1(x) ∧D(x) ∧R2(y) ∧C2(y)→D(y),
E(y, x) ∧C1(x) ∧L(x) ∧C2(y)→ L(y),
D is allowed only on the diagonal:

E(x, y) ∧ ((C0(x) ∧C0(y)) ∨ (C2(x) ∧C2(y))→ ¬D(y),
E(y, x) ∧ ((C1(x) ∧C1(y)) ∨ (C3(x) ∧C3(y))→ ¬D(y),



and analogously L is allowed only in the bottom row.
(vi) E-connections are only allowed between elements of specific
1-types, as in the picture (in particular only elements from D and
L may send edges to c0):

E(x, y)→ (R2(x) ∧C0(x) ∧R1(y) ∧C0(y))∨
(R3(x) ∧C3(x) ∧D(x) ∧R2(y) ∧C2(y) ∧D(y))∨
(C3(x) ∧L(x) ∧ P0(y)) ∨ (...)).

(vii) For each combination of i, j, each element other than c0 re-
ceives an edge from at most one element satisfying Ri,Cj . Taking
formula (vi) into account this implies that each element (except c0)
can have at most two incoming edges.
(viii) For each combination of i, j, each element sends an edge to
at most one element satisfying Ri,Cj .

This finishes the description of Φ. Consider now an arbitrary
model of Φ. By (i) it contains the initial bold triangle. The edge
from c2 to c0 is deterministic in this triangle, thus by (ii) we must
add an edge from c2 to another element, a, which by (vi) and (viii)
satisfies R2, C2 and by (v) it satisfies D. By (iv) it must send
an edge to c0. To satisfy (ii) and make this edge nondeterministic
there must be another edge to an element b satisfying, again by
(vi) and (viii), R1, C2. By one of completing triangles formulas
from (iii) there must be an edge from b to c2. A further fresh
element must be added to make this edge nondeterministic. This
way an infinite path (solid edges) through the grid is formed. At
each point, we indeed must add a fresh element, since an attempt
of reusing an earlier one of appropriate 1-type would violate (vii),
as all previously introduced elements have at this moment two
incoming edges (except c0 but it can be used only by elements in
L or D from the appropriate columns). Thus every model contains
an infinite octant grid of shape depicted in Fig. 3. The remaining
details of the encoding of an instance of the octant tiling problem
are routine.

To deal with the finite satisfiability problem a modification
is needed. We introduce a predicate P3 which is intended to be
realised precisely once and to mark the rightmost, bottom element,
and we allow this element to be deterministic, i.e., to send only
a single edge. Any finite model must then contain an element
satisfying P3, and the path starting from c0 must eventually end
in this element. Thus a model must contain a finite portion of our
octant, which allows to encode finite tilings (or Turing machine
finite computations of potentially unbounded length).

To our surprise reducing the number of variables in the above
result to three is problematic. Actually, we suspect that ∃∗ ∧ ∀3 +
DTC(E), without additional binary symbols is decidable. How-
ever, for this moment we leave this problem open.
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.1 Proof of Thm. 19
Proof. In [22] (see also [23], p. 67) it is shown by a reduction
from the Post Correspondence Problem that FO2 with unary re-
lations and two linear orders and their induced successor rela-
tions is undecidable. We can naturally translate this proof to our
scenario, with E1, E2 corresponding to the successor relations,
and their deterministic transitive closures to the order relations.
Let us review some details. The construction strictly follows the
lines of the proof from [23], we give it here just to show that
all the required properties can indeed by expressed by using a
∃∗ ∧ ∀2 +DTC(E1) +DTC(E2) formula.

Let Σ = {l1, . . . , ls} be a finite alphabet and let I = {(ui, vi) ∶
1 ≤ i ≤ n,ui, vi ∈ Σ+} be an instance of the Post Correspondence
Problem. For each l ∈ Σ we introduce a unary symbol Ll, for each
position j, 1 ≤ j ≤ ∣ui∣ of each ui we introduce a unary symbol
U ji , and analogously, for each position j, 1 ≤ j ≤ ∣vi∣ of each vi we
introduce a unary symbol V ji . We use also unary predicates U , V ,
P0, P1.

We construct a formula Φ such that every element in its model
lies on a deterministic E1-path and a deterministic E2-path from
the element c0 satisfying P0 to the element c1 satisfying P1. Every
element satisfies precisely one of Ll predicates, and thus encodes
one of the elements from Σ. Every element is also marked by one
of the predicates U , V . Each element marked by U satisfies pre-
cisely one of U ji -s. Similarly each element marked by V satisfies
precisely one of V ji -s. Thus, every element says to which letter of
one of the words ui or vi it corresponds.

The letters from Σ, encoded in elements of a model read along
the E1 path from P0 to P1 form a word from the language (u1v1 +
. . . + unvn)+, while read along the E2-path form a word from the
language (l1l1+. . . lsls)+. Moreover, when read along theE2-path
the predicates of type U and V alternate. Finally, if elements a, b
are both marked with predicates of type U or both are marked with
predicates of type V , and a is earlier than b on the E1-path then a
is also earlier than b on the E2-path. It is not difficult to see that
the above properties guarantee that a model of Φ exists iff I has a
solution.

Let us see how to write Φ in details. It is of the form

Φ = ∃xP0(x) ∧ ∃xP1(x) ∧ ∀x∀yϕ(x, y),
where ϕ enforces the desired properties.
P0 and P1 are realized precisely once their realizations have,

respectively, no predecessors and no successors:

⋀
i=0,1

(Pi(x) ∧ Pi(y)→ x = y) (1)

E1(x, y) ∨E2(x, y)→ ¬P0(y) ∧ ¬P1(x) (2)

Every element lies on the appropriate deterministic paths:

P0(y)→ x = y ∨ ⋀
i=1,2

Ei(y, x) (3)

P1(y)→ x = y ∨ ⋀
i=1,2

Ei(x, y) (4)

Elements are marked with appropriate unary symbols:

⋁̇l∈Σ
Ll(x) (5)

U(x)∨̇V (x) (6)

U(x)→ ⋁̇U ji (x) (7)

V (x)→ ⋁̇V ji (x) (8)

For all i, j, if the j-th letter of Ui is l and the j-th letter of V ij is l′

then we write

(U ji (x)→ Ll(x)) ∧ (V ji (x)→ Ll′(x)) (9)

The element satisfying P0 encodes the first letter of one of the
words ui, the element satisfying P1 encodes the last letter of one
of the words vi:

P0(x)→⋁
i

U1
i (10)

P1(x)→⋁
i

V
∣vi ∣
i (11)

U and V alternate along the E2-path:

E2(x, y)→ (U(x)↔ V (y)) (12)

The word read along the E1-path is as required:

E1(x, y)→ ψ(x, y), (13)

where ψ(x, y) says, using predicates U ji and V ji , that:

• if x encodes a non-final letter of some ui then y encodes the
next letter of ui,

• if x encodes the last letter of some ui then y encodes the first
letter of vi,

• if x encodes a non-final letter of some vi then y encodes the
next letter of vi,

• if x encodes the last letter of some vi then y encodes the first
letter of some uj .

The word read along the E2-path is as required:

E2(x, y) ∧U(x)→ ⋀
l∈Σ

(Ll(x)↔ Ll(y)) (14)

The order of U elements (V -elements) is identical on both
paths:

(U(x) ∧U(y)) ∨ (V (x) ∧ V (y)) ∧E1(x, y)
→ E2(x, y) (15)


