Polynomial-Space Completeness of Reachability for Succinct Branching VASS in Dimension One

Diego Figueira 1 Ranko Lazić 2 Jérôme Leroux 1 Filip Mazowiecki 3 Grégoire Sutre 1

¹LaBRI. CNRS

²University of Warwick

 $^3 \mbox{University of Oxford}$

ICALP 2017 Warsaw

Recall VASS

Recall VASS

Recall VASS

Recall VASS

Computations are words:

$$p,0 \xrightarrow{3} p,3 \xrightarrow{3} p,6 \xrightarrow{-6} q,0$$

Recall VASS

Computations are words:

$$p, 0 \xrightarrow{3} p, 3 \xrightarrow{3} p, 6 \xrightarrow{-6} q, 0$$

States Q, transitions $T\subseteq Q\times\mathbb{Z}^d\times Q$, configurations $Q\times\mathbb{N}^d$

Recall VASS

Computations are words:

$$p, 0 \xrightarrow{3} p, 3 \xrightarrow{3} p, 6 \xrightarrow{-6} q, 0$$

States Q, transitions $T\subseteq Q\times \mathbb{Z}^d\times Q$, configurations $Q\times \mathbb{N}^d$

BVASS: states Q, transitions $T \subseteq Q^2 \times \mathbb{Z}^d \times Q$, configurations $Q \times \mathbb{N}^d$

Recall VASS

Computations are words:

$$p, 0 \xrightarrow{3} p, 3 \xrightarrow{3} p, 6 \xrightarrow{-6} q, 0$$

States Q, transitions $T \subseteq Q \times \mathbb{Z}^d \times Q$, configurations $Q \times \mathbb{N}^d$

BVASS: states Q, transitions $T\subseteq Q^2\times\mathbb{Z}^d\times Q$, configurations $Q\times\mathbb{N}^d$

Computations are binary trees:

- leaves $(q_I, \vec{0})$

Recall VASS

Computations are words:

$$p,0 \ \xrightarrow{3} \ p,3 \ \xrightarrow{3} \ p,6 \ \xrightarrow{-6} \ q,0$$

States Q, transitions $T \subseteq Q \times \mathbb{Z}^d \times Q$, configurations $Q \times \mathbb{N}^d$

BVASS: states Q, transitions $T \subseteq Q^2 \times \mathbb{Z}^d \times Q$, configurations $Q \times \mathbb{N}^d$

Computations are binary trees:

Recall VASS

Computations are words:

$$p,0 \ \xrightarrow{3} \ p,3 \ \xrightarrow{3} \ p,6 \ \xrightarrow{-6} \ q,0$$

States Q, transitions $T \subseteq Q \times \mathbb{Z}^d \times Q$, configurations $Q \times \mathbb{N}^d$

BVASS: states Q, transitions $T\subseteq Q^2\times\mathbb{Z}^d\times Q$, configurations $Q\times\mathbb{N}^d$

Computations are binary trees:

- leaves
$$(q_I, \vec{0})$$
 - inner nodes
$$(q_l, q_r, \vec{z}, q) \in T \qquad q_l, \vec{n_l} \qquad \vec{n} = \vec{n_l} + \vec{z} + \vec{n_r}$$

Recall VASS

Computations are words:

$$p,0 \ \xrightarrow{3} \ p,3 \ \xrightarrow{3} \ p,6 \ \xrightarrow{-6} \ q,0$$

States Q, transitions $T \subseteq Q \times \mathbb{Z}^d \times Q$, configurations $Q \times \mathbb{N}^d$

BVASS: states Q, transitions $T \subseteq Q^2 \times \mathbb{Z}^d \times Q$, configurations $Q \times \mathbb{N}^d$

Computations are binary trees:

- leaves
$$(q_I, \vec{0})$$

- inner nodes
$$(q_l, q_r, \vec{z}, q) \in T \qquad q_l, \vec{n_l} \qquad \vec{n} = \vec{n_l} + \vec{z} + \vec{n_r}$$

$$(d=1)$$

$$(d = 1)$$

Fix n, b, where $0 \le b \le 2^n$

$$(d = 1)$$

Fix n, b, where $0 \le b \le 2^n$

• states $Q = \{q_1 \dots q_n\} \cup \{q_I, q_F\}$

$$(d=1)$$

Fix n, b, where $0 \le b \le 2^n$

- states $Q = \{q_1 \dots q_n\} \cup \{q_I, q_F\}$
- three types of transitions:

$$(d = 1)$$

Fix n, b, where $0 \le b \le 2^n$

- states $Q = \{q_1 \dots q_n\} \cup \{q_I, q_F\}$
- three types of transitions:

$$-(q_I,q_I,0,q_1),(q_I,q_I,1,q_1)$$

(initialize)

$$(d = 1)$$

Fix n, b, where $0 \le b \le 2^n$

- states $Q = \{q_1 \dots q_n\} \cup \{q_I, q_F\}$
- three types of transitions:
 - $-(q_I,q_I,0,q_1),(q_I,q_I,1,q_1)$
 - $(q_i, q_i, 0, q_{i+1})$ for all i < n

(initialize)

(build tree)

$$(d=1)$$

Fix n, b, where $0 \le b \le 2^n$

- states $Q = \{q_1 \dots q_n\} \cup \{q_I, q_F\}$
- three types of transitions:
 - $-(q_I,q_I,0,q_1),(q_I,q_I,1,q_1)$
 - $(q_i, q_i, 0, q_{i+1})$ for all i < n
 - $-(q_n,q_n,-b,q_F)$

(initialize)

(build tree)

(check value)

$$(d=1)$$

Fix n, b, where $0 \le b \le 2^n$

- states $Q = \{q_1 \dots q_n\} \cup \{q_I, q_F\}$
- three types of transitions:

$$-(q_I,q_I,0,q_1),(q_I,q_I,1,q_1)$$

-
$$(q_i, q_i, 0, q_{i+1})$$
 for all $i < n$

$$-(q_n,q_n,-b,q_F)$$

(build tree)

(check value)

$$n = 2$$
, $b = 3$

$$(d=1)$$

Fix n, b, where $0 \le b \le 2^n$

- states $Q = \{q_1 \dots q_n\} \cup \{q_I, q_F\}$
- three types of transitions:

$$-(q_I,q_I,0,q_1),(q_I,q_I,1,q_1)$$

-
$$(q_i, q_i, 0, q_{i+1})$$
 for all $i < n$

$$-(q_n,q_n,-b,q_F)$$

(initialize)

(build tree)

(check value)

$$n = 2$$
, $b = 3$

goal:
$$(q_F, 0)$$

$$(d = 1)$$

Fix n, b, where $0 < b < 2^n$

- states $Q = \{q_1 \dots q_n\} \cup \{q_I, q_F\}$
- three types of transitions:

Input: BVASS \mathcal{B} , configuration (q, \overrightarrow{n})

Problem: reachability of (q, \vec{n})

Input: BVASS \mathcal{B} , configuration (q, \overrightarrow{n})

Problem: reachability of (q, \vec{n})

Decidability: open, even for d=2

Input: BVASS \mathcal{B} , configuration (q, \overrightarrow{n})

Problem: reachability of (q, \vec{n})

Decidability: open, even for d=2

Input: BVASS \mathcal{B} , configuration (q, \vec{n})

Problem: reachability of (q, \vec{n})

Decidability: open, even for d=2

Connections with:

• FO² on data trees [Bojańczyk et al., 2009]

Input: BVASS \mathcal{B} , configuration (q, \vec{n})

Problem: reachability of (q, \vec{n})

Decidability: open, even for d=2

- FO² on data trees [Bojańczyk et al., 2009]
- linear logic [de Groote et al., 2004]

Input: BVASS \mathcal{B} , configuration (q, \vec{n})

Problem: reachability of (q, \vec{n})

Decidability: open, even for d=2

- FO² on data trees [Bojańczyk et al., 2009]
- linear logic [de Groote et al., 2004]
- recursively parallel programs [Bouajjani and Emmi, 2013]

Input: BVASS \mathcal{B} , configuration (q, \vec{n})

Problem: reachability of (q, \vec{n})

Decidability: open, even for d=2

- FO² on data trees [Bojańczyk et al., 2009]
- linear logic [de Groote et al., 2004]
- recursively parallel programs [Bouajjani and Emmi, 2013]
 .

Input: BVASS \mathcal{B} , configuration (q, \vec{n})

Problem: reachability of (q, \vec{n})

Decidability: open, even for d=2

Connections with:

- FO² on data trees [Bojańczyk et al., 2009]
- linear logic [de Groote et al., 2004]
- recursively parallel programs [Bouajjani and Emmi, 2013]
 ...

Other problems:

Coverability, boundedness – 2ExpTime-complete [Demri et al., 2013]

Reachability for d=1

Reachability for d=1 Unary encoding – PTime-complete [Göller et al., 2016]

Reachability for d=1

Unary encoding – PTIME-complete [Göller et al., 2016]

Status

	unary	binary
1-VASS	NL-complete	NP-complete
1-BVASS	P-complete	

Reachability for d=1

Unary encoding – PTIME-complete [Göller et al., 2016]

Status

	unary	binary	
1-VASS	NL-complete	NP-complete	/ ND bard
1-BVASS	P-complete) NP-hard
in $\operatorname{ExpTime}$			

Reachability for d=1

Unary encoding – PTIME-complete [Göller et al., 2016]

Status

	unary	binary	
1-VASS	NL-complete	NP-complete	/ ND pard
1-BVASS	P-complete	PSPACE-complete) NP-hard
in ExpTime			

Reachability for d=1

Unary encoding – PTIME-complete [Göller et al., 2016]

Status

	unary	binary	
1-VASS	NL-complete	NP-complete	ND bard
1-BVASS	P-complete	PSPACE-complete) NP-hard
in $\operatorname{ExpTime}$			

Easy to remember

Reachability for d=1

Unary encoding – PTIME-complete [Göller et al., 2016]

Status

	unary	binary	
1-VASS	NL-complete	NP-complete	ND bard
1-BVASS	P-complete	PSPACE-complete) NP-hard
in ExpTime			

Easy to remember

... but misleading: branching is not alternation

1-BVASS state of the art

Reachability for d=1

Unary encoding – PTIME-complete [Göller et al., 2016]

Status

	unary	binary	
1-VASS	NL-complete	NP-complete	ND bord
1-BVASS	P-complete	PSPACE-complete) NP-hard
in ExpTime			

Easy to remember

...but misleading: branching is not alternation

Connections with:

• Timed pushdown systems [Clemente et al., 2017]

1-BVASS \mathcal{B} , is (q, n) reachable?

1-BVASS \mathcal{B} , is (q, n) reachable?

Lemma (small witness)

If (q,n) is reachable then there is a computation with size bounded by $N = poly(n) \cdot exp(|B|)$.

1-BVASS \mathcal{B} , is (q, n) reachable?

Lemma (small witness)

If (q, n) is reachable then there is a computation with size bounded by $N = poly(n) \cdot exp(|B|)$.

(easy for 1-VASS)

1-BVASS \mathcal{B} , is (q, n) reachable?

Lemma (small witness)

If (q,n) is reachable then there is a computation with size bounded by $N=poly(n)\cdot exp(|B|).$

(easy for 1-VASS)

Lemma \implies reachability reduces to:

non-emptiness of tree-automaton, states $Q \times \{0 \dots N\}$

1-BVASS \mathcal{B} , is (q, n) reachable?

Lemma (small witness)

If (q,n) is reachable then there is a computation with size bounded by $N=poly(n)\cdot exp(|B|).$

(easy for 1-VASS)

Lemma \implies reachability reduces to:

non-emptiness of tree-automaton, states $Q \times \{0 \dots N\}$

Only exponential trees

1-BVASS \mathcal{B} , is (q, n) reachable?

Lemma (small witness)

If (q,n) is reachable then there is a computation with size bounded by $N=poly(n)\cdot exp(|B|).$

(easy for 1-VASS)

Lemma \implies reachability reduces to:

non-emptiness of tree-automaton, states $Q \times \{0 \dots N\}$

Only exponential trees

Guess a traversal

1-BVASS \mathcal{B} , is (q, n) reachable?

Lemma (small witness)

If (q,n) is reachable then there is a computation with size bounded by $N=poly(n)\cdot exp(|B|).$

(easy for 1-VASS)

Lemma \implies reachability reduces to:

non-emptiness of tree-automaton, states $Q \times \{0 \dots N\}$

Only exponential trees

Guess a traversal

(remembering only polynomially many ancestors)

1-BVASS \mathcal{B} , is (q, n) reachable?

Lemma (small witness)

If (q,n) is reachable then there is a computation with size bounded by $N=poly(n)\cdot exp(|B|).$

(easy for 1-VASS)

Lemma \implies reachability reduces to:

non-emptiness of tree-automaton, states $Q \times \{0 \dots N\}$

Only exponential trees

Guess a traversal

(remembering only polynomially many ancestors)

So in PSPACE

1-BVASS \mathcal{B} , is (q, n) reachable?

Core of the paper

Lemma (small witness)

If (q,n) is reachable then there is a computation with size bounded by $N=poly(n)\cdot exp(|B|).$

(easy for 1-VASS)

Lemma \implies reachability reduces to:

non-emptiness of tree-automaton, states $Q \times \{0 \dots N\}$

Only exponential trees

Guess a traversal

(remembering only polynomially many ancestors)

So in PSPACE

State repetition on paths

Cycle: run with a distinguished leaf

State repetition on paths

Cycle: run with a distinguished leaf

Zero cycle

State repetition on paths

Cycle: run with a distinguished leaf

Decreasing cycle (value -2)

State repetition on paths

Cycle: run with a distinguished leaf Increasing cycle (value 3)

State repetition on paths

State repetition on paths

State repetition on paths

State repetition on paths

Cycle: run with a distinguished leaf

How to remove a cycle?

State repetition on paths

State repetition on paths

Cycle: run with a distinguished leaf

How to remove a cycle? Removing zero and decreasing cycles is safe

Is (q, n) coverable?

Is (q, n) coverable?

Definition (coverability):

Is (q, n) coverable?

Definition (coverability):

Is (q,x) reachable, for some $x \ge n$

Is (q, n) coverable?

d-coverability

Definition (coverability):

Is (q,x) reachable, for some $x \geq n$

 $x \ge n \text{ and } x \equiv n \mod d$

Lemma (small witness for coverability)

If (q, n) is d-coverable then there is a small computation.

Is (q, n) coverable?

d-coverability

Definition (coverability):

Is (q, x) reachable, for some $x \geq n$

 $x \ge n \text{ and } x \equiv n \mod d$

Lemma (small witness for coverability)

If (q, n) is d-coverable then there is a small computation.

Proof idea for coverability:

Is (q,n) coverable? d-coverability Definition (coverability):

Is (q,x) reachable, for some $x \ge n$

 $x \ge n \text{ and } x \equiv n \mod d$

Lemma (small witness for coverability)

If (q, n) is d-coverable then there is a small computation.

Proof idea for coverability:

Remove decreasing cycles and zero cycles

Lemma (small witness for coverability)

If (q, n) is d-coverable then there is a small computation.

Proof idea for coverability:

- · Remove decreasing cycles and zero cycles
- Two cases:

Is (q,n) coverable? d-coverability

Definition (coverability):

Is (q, x) reachable, for some $x \ge n$

 $x \ge n \text{ and } x \equiv n \mod d$

Lemma (small witness for coverability)

If (q, n) is d-coverable then there is a small computation.

Proof idea for coverability:

- Remove decreasing cycles and zero cycles
- Two cases:

No cycles – computation depth $\leq |Q|$

Is (q, n) coverable?

d-coverability

Definition (coverability):

Is
$$(q,x)$$
 reachable, for some $x \geq n$

 $x \ge n \text{ and } x \equiv n \mod d$

Lemma (small witness for coverability)

If $\left(q,n\right)$ is d-coverable then there is a small computation.

Proof idea for coverability:

- Remove decreasing cycles and zero cycles
- Two cases:
 - No cycles computation depth $\leq |Q|$
 - Any increasing cycle reduced to state reachability

Reachability

Is (q, n) reachable?

Reachability

Is (q, n) reachable?

Witness representing computations

Is (q, n) reachable?

Witness representing computations

Partial run

Is (q, n) reachable?

Witness representing computations

Partial run

- proper leaves $(q_I,0)$ •

Is (q, n) reachable?

Witness representing computations

Partial run

- proper leaves $(q_I,0)$ •
- reachable nodes •

Is (q, n) reachable?

Witness representing computations

Partial run

- proper leaves $(q_I,0)$ •
- reachable nodes •

Decreasing simple cycles

- for every •

Is (q, n) reachable?

Witness representing computations

Partial run

- proper leaves $(q_I,0)$ •
- reachable nodes •

Decreasing simple cycles

- for every ●

Cycles are implicit

Is (q, n) reachable?

Witness representing computations

Partial run

- proper leaves $(q_I,0)$ •
- reachable nodes •

Decreasing simple cycles

- for every •

Cycles are implicit

- inductive construction

Is (q, n) reachable?

Witness representing computations

Partial run

- proper leaves $(q_I,0)$ •
- reachable nodes •

Decreasing simple cycles

- for every •

Cycles are implicit

 inductive construction (on bottom full runs)

Given a witness

Given a witness

Take the partial run

Given a witness

Take the partial run

• $-d_1, -d_2$ cycles values

Given a witness

Take the partial run

 \bullet $-d_1, -d_2$ cycles values

Build d_i -coverability runs

Given a witness

Take the partial run

 \bullet $-d_1, -d_2$ cycles values

Build d_i -coverability runs (small by lemma)

Given a witness

Take the partial run

 \bullet $-d_1, -d_2$ cycles values

Build d_i -coverability runs (small by lemma)

Adjust values

Given a witness

Take the partial run

 \bullet $-d_1, -d_2$ cycles values

Build d_i -coverability runs (small by lemma)

Adjust values (with decreasing cycles)

Given a witness

Take the partial run

ullet $-d_1, -d_2$ cycles values

Build d_i -coverability runs (small by lemma)

Adjust values (with decreasing cycles)

Proceed by induction

Given a witness

Take the partial run

 \bullet $-d_1, -d_2$ cycles values

Build d_i -coverability runs (small by lemma)

Adjust values (with decreasing cycles)

Proceed by induction

Size: $\mathcal{O}(M^d)$, M – max partial run size, d – depth

 $\mathcal{O}(M^d)$, M – max partial run size, d – depth

 $\mathcal{O}(M^d)$, M – max partial run size, d – depth

To prove the (small witness) lemma:

 $d \leq |Q|$ and M exponential

 $\mathcal{O}(M^d)$, M – max partial run size, d – depth

To prove the (small witness) lemma:

 $d \leq |Q|$ and M exponential

Start with a full run: d=1 and M big

 $\mathcal{O}(M^d)$, M – max partial run size, d – depth

To prove the (small witness) lemma:

 $d \leq |Q|$ and M exponential

Start with a full run: $d=1\ \mathrm{and}\ M$ big

Two operations on a witness W:

 $\mathcal{O}(M^d)$, M – max partial run size, d – depth

To prove the (small witness) lemma:

 $d \leq |Q|$ and M exponential

Start with a full run: $d=1\ \mathrm{and}\ M$ big

Two operations on a witness W:

• $O_1(W)$ remove a negative cycle

 $\mathcal{O}(M^d)$, M – max partial run size, d – depth

To prove the (small witness) lemma:

 $d \leq |Q|$ and M exponential

Start with a full run: $d=1\ \mathrm{and}\ M$ big

Two operations on a witness W:

• $O_1(W)$ remove a negative cycle

 $\mathcal{O}(M^d)$, M – max partial run size, d – depth

To prove the (small witness) lemma:

 $d \leq |Q|$ and M exponential

Start with a full run: $d=1\ \mathrm{and}\ M$ big

Two operations on a witness W:

• $O_1(W)$ remove a negative cycle

 $\mathcal{O}(M^d)$, M – max partial run size, d – depth

To prove the (small witness) lemma:

 $d \leq |Q|$ and M exponential

Start with a full run: d = 1 and M big

Two operations on a witness W:

• $O_1(W)$ remove a negative cycle

• $O_2(W)$ collapse depth

 $\mathcal{O}(M^d)$, M – max partial run size, d – depth

To prove the (small witness) lemma:

 $d \leq |Q|$ and M exponential

Start with a full run: $d=1\ \mathrm{and}\ M$ big

Two operations on a witness W:

ullet $O_1(W)$ remove a negative cycle

• $O_2(W)$ collapse depth

if d > |Q| then collapse

 $\mathcal{O}_1(W)$ decreases partial runs,

 $O_2(W)$ decreases depth

 $\mathcal{O}_1(W)$ decreases partial runs,

 $O_2(W)$ decreases depth

Define a WQO \leq on witnesses

 $O_1(W)$ decreases partial runs,

 $\mathcal{O}_2(W)$ decreases depth

Define a WQO \leq on witnesses

 $O_1(W) \prec W$ and $O_2(W) \prec W$

 $O_1(W)$ decreases partial runs, $O_2(W)$ decreases depth

Define a WQO \leq on witnesses $O_1(W) \prec W$ and $O_2(W) \prec W$

Perform O_1 and O_2 if possible

 $O_1(W)$ decreases partial runs, $O_2(W)$ decreases depth

Define a WQO \prec on witnesses $O_1(W) \prec W$ and $O_2(W) \prec W$

Perform O_1 and O_2 if possible WQO guarantees termination

PSPACE-completeness for succinct 1BVASS

 ${\cal O}_1(W)$ decreases partial runs, ${\cal O}_2(W)$ decreases depth

Define a WQO \leq on witnesses $O_1(W) \prec W$ and $O_2(W) \prec W$

Perform O_1 and O_2 if possible WQO guarantees termination

In the end:

• $d \leq |Q|$

 $O_1(W)$ decreases partial runs, $O_2(W)$ decreases depth

Define a WQO \leq on witnesses $O_1(W) \prec W$ and $O_2(W) \prec W$

Perform O_1 and O_2 if possible WQO guarantees termination

In the end:

- $d \leq |Q|$
- max partial runs without decreasing cycles

 $O_1(W)$ decreases partial runs, $O_2(W)$ decreases depth

Define a WQO \leq on witnesses $O_1(W) \prec W$ and $O_2(W) \prec W$

Perform ${\cal O}_1$ and ${\cal O}_2$ if possible WQO guarantees termination

In the end:

- $d \leq |Q|$
- max partial runs without decreasing cycles (essentially small)

PSPACE-hardness

PSPACE-hardness

Take an alternating PTIME Turing Machine

PSPACE-hardness

Take an alternating PTIME Turing Machine

ullet time and space bound: N

PSPACE-hardness

Take an alternating PTIME Turing Machine

ullet time and space bound: N

Build a 1-BVASS

PSPACE-hardness

Take an alternating PTIME Turing Machine

ullet time and space bound: N

Build a 1-BVASS

Machine tape encoded in the counter

PSPACE-hardness

Take an alternating PTIME Turing Machine

ullet time and space bound: N

Build a 1-BVASS

Machine tape encoded in the counter

Example N=4, tape 1001

 $(\underline{1}000)(\underline{0}000)(\underline{0}000)(\underline{1}000)$

PSPACE-hardness

Take an alternating PTIME Turing Machine

ullet time and space bound: N

Build a 1-BVASS

Machine tape encoded in the counter

Example N=4, tape 1001

alternation

(0100)(0000)(0000)(0100)

 $(0\underline{1}00)(0\underline{0}00)(0\underline{0}00)(0\underline{1}00)$

PSPACE-hardness

Take an alternating PTIME Turing Machine

ullet time and space bound: N

Build a 1-BVASS

Machine tape encoded in the counter

Example N=4, tape 1001

alternation

(0100)(0000)(0000)(0100)

Branching with equal values

PSPACE-hardness

Take an alternating PTIME Turing Machine

ullet time and space bound: N

Build a 1-BVASS

Machine tape encoded in the counter

Example N=4, tape 1001

alternation

 $(0\underline{1}00)(0\underline{0}00)(0\underline{0}00)(0\underline{1}00)$

 $(0\underline{1}00)(0\underline{0}00)(0\underline{0}00)(0\underline{1}00)$

Branching with equal values

Possible for height N

Reachability of BVASS?

- Reachability of BVASS?
- At least in dimension 2?

Reachability of BVASS?

• At least in dimension 2?

Bounded 1-VASS: PSPACE-complete [Fearnley and Jurdziński, 2013]

- Reachability of BVASS?
- At least in dimension 2?
- Bounded 1-VASS: PSPACE-complete [Fearnley and Jurdziński, 2013]
- Bounded 1-BVASS?

- Reachability of BVASS?
- At least in dimension 2?
- Bounded 1-VASS: PSPACE-complete [Fearnley and Jurdziński, 2013]
- Bounded 1-BVASS?

 in EXPTIME and PSPACE-hard