Reachability for Bounded Branching VASS

Filip Mazowiecki¹ and Michał Pilipczuk²

 $^1 {\sf University}$ of Bordeaux

²University of Warsaw

CONCUR 2019

Powered by BeamerikZ

Reachability for Bounded Branching VASS

Filip Mazowiecki¹ and Michał Pilipczuk²

 $^1 {\sf University}$ of Bordeaux

²University of Warsaw

CONCUR 2019

[2019/08/27 14:00:57 (14)]

Powered by BeamerikZ

 (Q,Δ) , where $\Delta\subseteq Q imes \mathbb{Z}^d imes Q$

Filip Mazowiecki and Michał Pilipczuk Reachability for Bounded Branching VASS

 (Q, Δ) , where $\Delta \subseteq Q imes \mathbb{Z}^d imes Q$

Example: d = 3, $Q = \{p, q\}$

 (Q, Δ) , where $\Delta \subseteq Q imes \mathbb{Z}^d imes Q$

Example: d = 3, $Q = \{p, q\}$

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \mathbb{N}^d$

 (Q, Δ) , where $\Delta \subseteq Q imes \mathbb{Z}^d imes Q$

Example: d = 3, $Q = \{p, q\}$

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \mathbb{N}^d$

Example run:

p(0,0,1)
ightarrow p(0,1,0)
ightarrow q(0,1,0)
ightarrow q(0,0,2)

Filip Mazowiecki and Michał Pilipczuk

 (Q, Δ) , where $\Delta \subseteq Q imes \mathbb{Z}^d imes Q$

Example: d = 3, $Q = \{p, q\}$

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \mathbb{N}^d$

Example run:

$$p(0,0,1)
ightarrow p(0,1,0)
ightarrow q(0,1,0)
ightarrow q(0,0,2)$$

Notation: $p(0,0,1)
ightarrow^* q(0,0,2)$

Filip Mazowiecki and Michał Pilipczuk

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \mathbb{N}^d$

Example run:

$$p(0,0,1)
ightarrow p(0,1,0)
ightarrow q(0,1,0)
ightarrow q(0,0,2)$$

Notation: $p(0,0,1)
ightarrow^* q(0,0,2)$

Filip Mazowiecki and Michał Pilipczuk

 (Q, Δ, B) , where (Q, Δ) is a *d*-VASS and $B \in \mathbb{N}$ (in binary)

 (Q, Δ, B) , where (Q, Δ) is a *d*-VASS and $B \in \mathbb{N}$ (in binary)

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \{0, \dots, B\}^d$

$$(Q, \Delta, B)$$
, where (Q, Δ) is a *d*-VASS and $B \in \mathbb{N}$ (in binary)

Configurations $p(\mathbf{v}) = (\mathbf{p}, \mathbf{v}) \in Q \times \{0, \dots, B\}^d$

For example $p(0, B, B) \xrightarrow{(1,1,-1)}$ not allowed (B+1 > B)

$$(Q, \Delta, B)$$
, where (Q, Δ) is a *d*-VASS and $B \in \mathbb{N}$ (in binary)

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \{0, \dots, B\}^d$

For example $p(0, B, B) \xrightarrow{(1,1,-1)}$ not allowed (B+1 > B)

Why is it interesting?

Counters: c_1, \ldots, c_d

$$(Q, \Delta, B)$$
, where (Q, Δ) is a *d*-VASS and $B \in \mathbb{N}$ (in binary)

Configurations $p(\mathbf{v}) = (p, \mathbf{v}) \in Q \times \{0, \dots, B\}^d$

For example $p(0, B, B) \xrightarrow{(1,1,-1)}$ not allowed (B+1 > B)

Why is it interesting?

Counters: c_1, \ldots, c_d

• Before we could encode $c_i \ge n$ tests First $(0, \ldots, 0, -n, 0, \ldots, 0)$ then $(0, \ldots, 0, n, 0, \ldots, 0)$

$$(Q, \Delta, B)$$
, where (Q, Δ) is a *d*-VASS and $B \in \mathbb{N}$ (in binary)

Configurations
$$p(\mathbf{v}) = (\mathbf{p}, \mathbf{v}) \in Q \times \{0, \dots, B\}^d$$

For example $p(0, B, B) \xrightarrow{(1,1,-1)}$ not allowed (B+1 > B)

Why is it interesting?

Counters: c_1, \ldots, c_d

- Before we could encode $c_i \ge n$ tests First $(0, \ldots, 0, -n, 0, \ldots, 0)$ then $(0, \ldots, 0, n, 0, \ldots, 0)$
- Now we can also encode $c_i \leq n$ tests First $(0, \ldots, 0, B - n, 0, \ldots, 0)$ then $(0, \ldots, 0, n - B, 0, \ldots, 0)$

Reachability problem:

GIVEN: *d*-VASS (Q, Δ) and configurations p(u), q(v)

(or d-BOVASS (Q, Δ, B))

DECIDE: whether $p(u) \rightarrow^* q(v)$?

Reachability problem:

GIVEN: *d*-VASS (Q, Δ) and configurations p(u), q(v)(or *d*-BOVASS (Q, Δ, B)) DECIDE: whether $p(u) \rightarrow^* q(v)$?

State of art:

• *d*-VASS: in Ackermann [Leroux and Schmitz, 2019] and TOWER-hard [Czerwiński et al., 2019]

Reachability problem:

GIVEN: *d*-VASS (Q, Δ) and configurations p(u), q(v)(or *d*-BOVASS (Q, Δ, B)) DECIDE: whether $p(u) \rightarrow^* q(v)$?

State of art:

- *d*-VASS: in Ackermann [Leroux and Schmitz, 2019] and TOWER-hard [Czerwiński et al., 2019]
- 1-VASS: NL-complete (in unary) [Valiant and Paterson, 1975] NP-complete (in binary) [Haase et al., 2009]

Reachability problem:

GIVEN: *d*-VASS (Q, Δ) and configurations p(u), q(v)(or *d*-BOVASS (Q, Δ, B)) DECIDE: whether $p(u) \rightarrow^* q(v)$?

- *d*-VASS: in Ackermann [Leroux and Schmitz, 2019] and TOWER-hard [Czerwiński et al., 2019]
- 1-VASS: NL-complete (in unary) [Valiant and Paterson, 1975] NP-complete (in binary) [Haase et al., 2009]
- *d*-BoVASS: in PSPACE [Obvious]

PSPACE-hard even for d = 1 [Fearnley and Jurdziński, 2013]

Copying c_1 to c_2

Filip Mazowiecki and Michał Pilipczuk Reachability for Bounded Branching VASS

Copying c_1 to c_2

Let: $c_1 = n_1$, $c_2 = n_2$ $0 \le n_1 \le M$ and B = M(M + 2)Goal: $c_1 = c_2 = n_1$

Copying c_1 to c_2

Let: $c_1 = n_1$, $c_2 = n_2$ $0 \le n_1 \le M$ and B = M(M + 2)Goal: $c_1 = c_2 = n_1$

Copying c_1 to c_2

Let: $c_1 = n_1$, $c_2 = n_2$ $0 \le n_1 \le M$ and B = M(M + 2)Goal: $c_1 = c_2 = n_1$

• $p(n_1, n_2) \rightarrow^* r_1(n_1, 0)$

Copying c_1 to c_2

Let: $c_1 = n_1$, $c_2 = n_2$ $0 \le n_1 \le M$ and B = M(M + 2)Goal: $c_1 = c_2 = n_1$

- $p(n_1, n_2) \rightarrow^* r_1(n_1, 0)$
- $r_1(n_1, 0) \rightarrow^* r_2(0, (M+2)n_1)$

Copying c_1 to c_2

Let: $c_1 = n_1$, $c_2 = n_2$ $0 \le n_1 \le M$ and B = M(M + 2)Goal: $c_1 = c_2 = n_1$

- $p(n_1, n_2) \rightarrow^* r_1(n_1, 0)$
- $r_1(n_1, 0) \rightarrow^* r_2(0, (M+2)n_1)$
- $r_2(0, (M+2)n_1) \rightarrow^* q(n_1, n_1)$

$$egin{aligned} &(Q,\Delta_1,\Delta_2,q_0)\ & ext{where }\Delta_1\subseteq Q imes \mathbb{Z} imes Q, & ext{and }\Delta_2\subseteq Q^3 \end{aligned}$$

$$egin{aligned} &(Q,\Delta_1,\Delta_2,q_0)\ & ext{where }\Delta_1\subseteq Q imes \mathbb{Z} imes Q, & ext{and }\Delta_2\subseteq Q^3 \end{aligned}$$

Configurations: $Q \times \mathbb{N}^d$ (the same)

 $egin{aligned} &(Q,\Delta_1,\Delta_2,q_0) \ & ext{where } \Delta_1 \subseteq Q imes \mathbb{Z} imes Q, & ext{and } \Delta_2 \subseteq Q^3 \end{aligned}$

Configurations: $Q \times \mathbb{N}^d$ (the same)

Computations are trees:

• leaves labelled: $(q_0, \mathbf{0})$

 $egin{aligned} &(Q,\Delta_1,\Delta_2,q_0)\ & ext{where }\Delta_1\subseteq Q imes \mathbb{Z} imes Q, & ext{and }\Delta_2\subseteq Q^3 \end{aligned}$

Configurations: $Q \times \mathbb{N}^d$ (the same)

Computations are trees:

- leaves labelled: $(q_0, \mathbf{0})$
- inner nodes

 \triangleright with one child: $(p, z, q) \in \Delta_1$, u + z = v

 $egin{aligned} &(Q,\Delta_1,\Delta_2,\mathit{q}_0)\ & ext{where }\Delta_1\subseteq Q imes \mathbb{Z} imes Q, & ext{and }\Delta_2\subseteq Q^3 \end{aligned}$

Configurations: $Q \times \mathbb{N}^d$ (the same)

Computations are trees:

- leaves labelled: $(q_0, \mathbf{0})$
- inner nodes

 \triangleright with one child: $(p, z, q) \in \Delta_1$, u + z = v

 \triangleright with two children: $(p, q_1, q_2) \in \Delta_2$, $u = v_1 + v_2$

 $(Q, \Delta_1, \Delta_2, q_0)$ where $\Delta_1 \subseteq Q \times \mathbb{Z} \times Q$, and $\Delta_2 \subseteq Q^3$

Configurations: $Q \times \mathbb{N}^d$ (the same)

Computations are trees:

- leaves labelled: $(q_0, \mathbf{0})$
- inner nodes

 \triangleright with one child: $(p, z, q) \in \Delta_1, u + z = v$

 \triangleright with two children: $(p, q_1, q_2) \in \Delta_2$, $u = v_1 + v_2$

then it's a
$$d$$
-VASS

a

Filip Mazowiecki and Michał Pilipczuk

 q_1, v

Fix
$$n, b$$
 $(n = 3, b = 3)$

Fix n, b (n = 3, b = 3)

• states $Q = \{q_1 \dots q_n\} \cup \{q_0, q_F\}$

Fix n, b (n = 3, b = 3)

• states $Q = \{q_1 \dots q_n\} \cup \{q_0, q_F\}$

Filip Mazowiecki and Michał Pilipczuk

Fix n, b (n = 3, b = 3)

- states $Q = \{q_1 \dots q_n\} \cup \{q_0, q_F\}$
- three types of transitions:

$$(q_1, 0, q_0), (q_1, -1, q_0) \in \Delta_2$$

Filip Mazowiecki and Michał Pilipczuk

Fix n, b (n = 3, b = 3)

• states
$$Q = \{q_1 \dots q_n\} \cup \{q_0, q_F\}$$

• three types of transitions:

$$egin{aligned} &-(q_1, 0, q_0), (q_1, -1, q_0) \in \Delta_1 \ &-(q_{i+1}, q_i, q_i) \in \Delta_2 ext{ for all } i < n \end{aligned}$$

Filip Mazowiecki and Michał Pilipczuk

Fix n, b (n = 3, b = 3)

• states
$$Q = \{q_1 \dots q_n\} \cup \{q_0, q_F\}$$

• three types of transitions:

Filip Mazowiecki and Michał Pilipczuk

Reachability problem:

GIVEN: *d*-BRVASS $(Q, \Delta_1, \Delta_2, q_0)$ and a configuration p(u)

DECIDE: is there a computation tree with p(u) in the root?

Reachability problem:

GIVEN: *d*-BRVASS $(Q, \Delta_1, \Delta_2, q_0)$ and a configuration p(u)

DECIDE: is there a computation tree with p(u) in the root?

Previous example: Reachable iff $0 \le b \le 2^{n-1}$

Reachability problem:

GIVEN: *d*-BrVASS $(Q, \Delta_1, \Delta_2, q_0)$ and a configuration p(u)

DECIDE: is there a computation tree with p(u) in the root?

Previous example: Reachable iff $0 \le b \le 2^{n-1}$

State of art:

• *d*-BRVASS: open for $d \ge 2$

Reachability problem:

GIVEN: *d*-BrVASS $(Q, \Delta_1, \Delta_2, q_0)$ and a configuration p(u)

DECIDE: is there a computation tree with p(u) in the root?

Previous example: Reachable iff $0 \le b \le 2^{n-1}$

State of art:

- d-BRVASS: open for $d \ge 2$
- 1-BRVASS: PTIME-complete (in unary) [Göller et al., 2016] PSPACE-complete (in binary) [Figueira et al., 2017]

Reachability problem:

GIVEN: *d*-BRVASS $(Q, \Delta_1, \Delta_2, q_0)$ and a configuration p(u)

DECIDE: is there a computation tree with p(u) in the root?

Previous example: Reachable iff $0 \le b \le 2^{n-1}$

State of art:

- d-BRVASS: open for $d \ge 2$
- 1-BRVASS: PTIME-complete (in unary) [Göller et al., 2016] PSPACE-complete (in binary) [Figueira et al., 2017]

• Bounded *d*-BRVASS (*d*-BOBRVASS): this paper!

Reachability problem:

GIVEN: *d*-BRVASS $(Q, \Delta_1, \Delta_2, q_0)$ and a configuration p(u)

DECIDE: is there a computation tree with p(u) in the root?

Previous example: Reachable iff $0 \le b \le 2^{n-1}$

State of art:

- d-BRVASS: open for $d \ge 2$
- 1-BRVASS: PTIME-complete (in unary) [Göller et al., 2016] PSPACE-complete (in binary) [Figueira et al., 2017]
- Bounded *d*-BRVASS (*d*-BOBRVASS): this paper! in EXPTIME [Obvious]

	unary	binary	with bound
VASS	NL-complete	NP-complete	PSPACE-complete

	unary	binary	with bound
VASS	NL-complete	NP-complete	PSPACE-complete
BRVASS	P-complete	PSPACE-complete	in EXPTIME

For d = 1

	unary	binary	with bound
VASS	NL-complete	NP-complete	PSPACE-complete
BRVASS	P-complete	PSPACE-complete	in EXPTIME

PSPACE-hard

For d = 1

	unary	binary	with bound
VASS	NL-complete	NP-complete	PSPACE-complete
BRVASS	P-complete	PSPACE-complete	in EXPTIME

 $\mathsf{PSPACE}\mathsf{-hard}$

Possibly misleading: branching is not alternation

For d = 1

	unary	binary	with bound
VASS	NL-complete	NP-complete	PSPACE-complete
BRVASS	P-complete	PSPACE-complete	in EXPTIME

$\mathsf{PSPACE}\mathsf{-hard}$

Possibly misleading: branching is not alternation

	unary	binary	with bound
VASS	NL-complete	PSPACE-complete	PSPACE-complete

For d = 1

	unary	binary	with bound
VASS	NL-complete	NP-complete	PSPACE-complete
BRVASS	P-complete	PSPACE-complete	in EXPTIME

$\mathsf{PSPACE}\mathsf{-hard}$

Possibly misleading: branching is not alternation

	unary	binary	with bound
VASS	NL-complete	PSPACE-complete	PSPACE-complete
BRVASS	?	?	EXPTIME-complete

For d = 1

	unary	binary	with bound
VASS	NL-complete	NP-complete	PSPACE-complete
BRVASS	P-complete	PSPACE-complete	in EXPTIME

PSPACE-hard

Possibly misleading: branching is not alternation

For d = 2

	unary	binary	with bound
VASS	NL-complete	PSPACE-complete	PSPACE-complete
BRVASS	?	?	EXPTIME-complete

• Reachability for $1\text{-}\mathrm{BoBrVASS}$ remains open

 $(Q, \Delta_1, \Delta_2, q_0)$

 c_1 – the real counter, c_2 – buffer (usually $c_2 = 0$)

 $egin{aligned} &(Q,\Delta_1,\Delta_2,q_0)\ &c_1- ext{the real counter},\ c_2- ext{buffer (usually }c_2=0) \end{aligned}$

• Test transitions: $c_i \ge n, c_i \le n, c_i = n \in \Delta_1$

 $egin{aligned} &(Q,\Delta_1,\Delta_2,q_0)\ &c_1- \mbox{the real counter},\ c_2- \mbox{buffer (usually }c_2=0) \end{aligned}$

- Test transitions: $c_i \ge n, c_i \le n, c_i = n \in \Delta_1$
- Division transitions: $c_1 \div 2 \in \Delta_1$, $p(m,0) \xrightarrow{c_1 \div 2} q(n,0)$ iff m = 2n

$$(Q, \Delta_1, \Delta_2, q_0)$$

 c_1 – the real counter, c_2 – buffer (usually $c_2 = 0$)

- Test transitions: $c_i \ge n, c_i \le n, c_i = n \in \Delta_1$
- Division transitions: $c_1 \div 2 \in \Delta_1$, $p(m,0) \xrightarrow{c_1 \div 2} q(n,0)$ iff m = 2n

$$(Q, \Delta_1, \Delta_2, q_0)$$

 c_1 – the real counter, c_2 – buffer (usually $c_2 = 0$)

- Test transitions: $c_i \ge n, c_i \le n, c_i = n \in \Delta_1$
- Division transitions: $c_1 \div 2 \in \Delta_1$, $p(m,0) \xrightarrow{c_1 \div 2} q(n,0)$ iff m = 2n

Notation: $1\text{-BoBrVASS}^{\div 2}$

$$(Q, \Delta_1, \Delta_2, q_0)$$

 c_1 – the real counter, c_2 – buffer (usually $c_2 = 0$)

- Test transitions: $c_i \ge n, c_i \le n, c_i = n \in \Delta_1$
- Division transitions: $c_1 \div 2 \in \Delta_1$, $p(m,0) \xrightarrow{c_1 \div 2} q(n,0)$ iff m = 2n

Notation: $1\text{-BoBrVASS}^{\div 2}$

Remark

 $1\text{-}BOBRVASS^{\div 2} = 1\text{-}BOBRVASS^{\times 2} = 1\text{-}BOBRVASS^{\times 2, \div 2}$

Filip Mazowiecki and Michał Pilipczuk

Reachability for Bounded Branching VASS

Fix $M = 2^n$ and suppose $c_1 = x$, $0 \le x \le M - 1$ Bound $B = M^4$

Fix
$$M = 2^n$$
 and suppose $c_1 = x$, $0 \le x \le M - 1$
Bound $B = M^4$

• Gadget 1 (G1): $x \rightarrow x + Mx$.

10 / 14

Fix
$$M = 2^n$$
 and suppose $c_1 = x$, $0 \le x \le M - 1$
Bound $B = M^4$

• Gadget 1 (G1): $x \rightarrow x + Mx$.

10 / 14

Fix
$$M = 2^n$$
 and suppose $c_1 = x$, $0 \le x \le M - 1$
Bound $B = M^4$

• Gadget 1 (G1): $x \rightarrow x + Mx$.

Fix
$$M = 2^n$$
 and suppose $c_1 = x$, $0 \le x \le M - 1$
Bound $B = M^4$

• Gadget 1 (G1): $x \rightarrow x + Mx$.

Fix
$$M = 2^n$$
 and suppose $c_1 = x$, $0 \le x \le M - 1$
Bound $B = M^4$

• Gadget 1 (G1):
$$x \rightarrow x + Mx$$
.

Fix
$$M = 2^n$$
 and suppose $c_1 = x$, $0 \le x \le M - 1$
Bound $B = M^4$

• Gadget 1 (G1):
$$x \rightarrow x + Mx$$
.

Filip Mazowiecki and Michał Pilipczuk

Reachability for Bounded Branching VASS

Fix
$$M = 2^n$$
 and suppose $c_1 = x$, $0 \le x \le M - 1$
Bound $B = M^4$

• Gadget 1 (G1):
$$x \rightarrow x + Mx$$
.

Fix
$$M = 2^n$$
 and suppose $c_1 = x$, $0 \le x \le M - 1$
Bound $B = M^4$

• Gadget 1 (G1):
$$x \rightarrow x + Mx$$
.

Fix
$$M = 2^n$$
 and suppose $c_1 = x$, $0 \le x \le M - 1$
Bound $B = M^4$

• Gadget 1 (G1):
$$x \rightarrow x + Mx$$
.

Filip Mazowiecki and Michał Pilipczuk

Reachability for Bounded Branching VASS

$$egin{aligned} (S,\,T), & S = S_\exists \ \uplus \ S_orall \ T \subseteq S imes \mathbb{N} \setminus \{0\} imes S \ (ext{in binary}) \end{aligned}$$

• Starting configuration s(c), $s \in S$, $c \in \mathbb{N}$

$$egin{aligned} (S,\,T), & S = S_\exists \ \uplus \ S_orall \ T \subseteq S imes \mathbb{N} \setminus \{0\} imes S \ (ext{in binary}) \end{aligned}$$

- Starting configuration s(c), $s \in S$, $c \in \mathbb{N}$
- Two players: \exists and \forall . If $s \in S_q$ it's q's turn

 $egin{aligned} (S,\,T), & S = S_\exists \ \uplus \ S_\forall \ T \subseteq S imes \mathbb{N} \setminus \{0\} imes S \ (ext{in binary}) \end{aligned}$

- Starting configuration s(c), $s \in S$, $c \in \mathbb{N}$
- Two players: \exists and \forall . If $s \in S_q$ it's q's turn
- q chooses t = (s, n, s') and moves to s'(c n)

(we can assume each s has two outgoing transitions)

 $egin{aligned} (S,\,T), & S = S_\exists \ \uplus \ S_\forall \ T \subseteq S imes \mathbb{N} \setminus \{0\} imes S \ (ext{in binary}) \end{aligned}$

- Starting configuration s(c), $s \in S$, $c \in \mathbb{N}$
- Two players: \exists and \forall . If $s \in S_q$ it's q's turn
- q chooses t = (s, n, s') and moves to s'(c n)
 (we can assume each s has two outgoing transitions)
- If c n = 0 then \exists wins,
 - if c n < 0 then \forall wins, otherwise continue

 $egin{aligned} (S,\,T), & S = S_\exists \ \uplus \ S_\forall \ T \subseteq S imes \mathbb{N} \setminus \{0\} imes S \ (ext{in binary}) \end{aligned}$

- Starting configuration s(c), $s \in S$, $c \in \mathbb{N}$
- Two players: \exists and \forall . If $s \in S_q$ it's q's turn
- q chooses t = (s, n, s') and moves to s'(c n)
 (we can assume each s has two outgoing transitions)
- If c n = 0 then \exists wins,

if c - n < 0 then \forall wins, otherwise continue

Lemma (Jurdziński et al., 2008)

GIVEN: (S, T) and s(c) DETERMINE: does \exists have a winning strategy is EXPTIME-complete.

Given (S, T) and s(c) $(c < M = 2^n)$

Construction of $(Q, \Delta_1, \Delta_2, q_0)$ (with $\div 2$):

• $S \subseteq Q$

Given
$$(S, T)$$
 and $s(c)$ $(c < M = 2^n)$

Construction of $(Q, \Delta_1, \Delta_2, q_0)$ (with $\div 2$):

- $S \subseteq Q$
- For every $s \in S_{\exists}$ let $(s, n_1, s_1), (s, n_2, s_2) \in T$ Add $(s, -n_1, s_1), (s, -n_2, s_2) \in \Delta_1$

Given
$$(S, T)$$
 and $s(c)$ $(c < M = 2^n)$

Construction of $(Q, \Delta_1, \Delta_2, q_0)$ (with $\div 2$):

- $S \subseteq Q$
- For every $s \in S_{\exists}$ let $(s, n_1, s_1), (s, n_2, s_2) \in T$ Add $(s, -n_1, s_1), (s, -n_2, s_2) \in \Delta_1$
- For every $s \in S_{\forall}$ let $(s, n_1, s_1), (s, n_2, s_2) \in T$ Add G2 that copies value in s to s'_1 and s'_2 Add $(s'_1, -n_1, s_1), (s'_2, -n_2, s_2) \in \Delta_1$

Given
$$(S, T)$$
 and $s(c)$ $(c < M = 2^n)$

Construction of $(Q, \Delta_1, \Delta_2, q_0)$ (with $\div 2$):

- $S \subseteq Q$
- For every $s \in S_{\exists}$ let $(s, n_1, s_1), (s, n_2, s_2) \in T$ Add $(s, -n_1, s_1), (s, -n_2, s_2) \in \Delta_1$
- For every $s \in S_{\forall}$ let $(s, n_1, s_1), (s, n_2, s_2) \in T$ Add G2 that copies value in s to s'_1 and s'_2 Add $(s'_1, -n_1, s_1), (s'_2, -n_2, s_2) \in \Delta_1$
- For every $s \in S$ Add $(s, 0, q_0) \in \Delta_1$

Can we simulate \div 2 or \times 2 in 1-BoBrVASS?

Can we simulate \div 2 or \times 2 in 1-BoBrVASS? We prove that no

Can we simulate \div 2 or \times 2 in 1-BoBrVASS? We prove that no

• Is it EXPTIME-hard?

Then one should encode a full binary tree of exponential height

Can we simulate \div 2 or \times 2 in 1-BoBrVASS? We prove that no

• Is it EXPTIME-hard?

Then one should encode a full binary tree of exponential height A gadget like G2 would be useful

Can we simulate \div 2 or \times 2 in 1-BoBrVASS? We prove that no

• Is it EXPTIME-hard?

Then one should encode a full binary tree of exponential height A gadget like G2 would be useful

• Is it in PSPACE?

It suffices to show that computation trees can be of exponential size

Can we simulate \div 2 or \times 2 in 1-BoBrVASS? We prove that no

• Is it EXPTIME-hard?

Then one should encode a full binary tree of exponential height A gadget like G2 would be useful

• Is it in PSPACE?

It suffices to show that computation trees can be of exponential size That's how PSPACE upper bound for 1-BRVASS is proved Nothing from [Figueira et al., 2017] work for 1-BoBRVASS

• 2-BoBrVASS is EXPTIME-complete What about 1-BoBrVASS (In EXPTIME, PSPACE-hard)?

- 2-BoBrVASS is EXPTIME-complete What about 1-BoBrVASS (In EXPTIME, PSPACE-hard)?
- Connections with timed automata

1-BoVASS: timed automata [Haase et al., 2012]

1-BoBrVASS: timed pushdown automata [Clemente et al., 2017]

- 2-BoBrVASS is EXPTIME-complete What about 1-BoBrVASS (In EXPTIME, PSPACE-hard)?
- Connections with timed automata
 1-BoVASS: timed automata [Haase et al., 2012]
 1-BoBrVASS: timed pushdown automata [Clemente et al., 2017]
- Connections with VASS
 1-BoVASS ≤ 2-VASS [Blondin et al., 2015]
 1-BoBRVASS ≤ 2-BRVASS [this paper]

- 2-BoBrVASS is EXPTIME-complete What about 1-BoBrVASS (In EXPTIME, PSPACE-hard)?
- Connections with timed automata
 1-BoVASS: timed automata [Haase et al., 2012]
 1-BoBrVASS: timed pushdown automata [Clemente et al., 2017]
- Connections with VASS
 1-BoVASS ≤ 2-VASS [Blondin et al., 2015]
 1-BoBRVASS ≤ 2-BRVASS [this paper]
- Some explanation: 'bobr' is 'beaver' in polish

