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Plan

1. Petri nets

2.Workflow nets and soundness

3. Some proofs



Almost Petri nets

Almost Petri net (d ,T ): d – dimension, T ⊆ Zd (finite)

Example: d = 2, T = {t1, t2, t3}

t1 = (1, 2)

t2 = (1,−1)

t3 = (−3,−1)

t1

t2

t3

Reachability problem: given (d ,T ) and two vectors a,b ∈ Nd

Determine if one can go from a to b remaining in Nd?

1

2

3

1 2 3 4 5

a b

t1 t2

t1 t2

t2

t3

(without t3 it’s not possible)

Notation: a →∗ b, a ̸→∗ b
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Petri nets

(d ,T ): d – dimension, T ⊆ Zd Nd × Nd (finite)

Previous example: d = 2, T = {t ′1, t ′2, t ′3}

instead of t1 = (1, 2) t ′1 = (0, 0)× (1, 2)

instead of t2 = (1,−1) t ′2 = (0, 1)× (1, 0)

instead of t3 = (−3,−1) t ′3 = (3, 1)× (0, 0)

(,) = -(,) + (,)

t1

2 1

t2

1 1

t3

3 1

t1

t2 t4

=

(0, 1)× (0, 1)
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1. Petri nets

2.Workflow nets and soundness
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Workflow nets

initial final

2

Workflow nets are Petri nets such that:

• Two places are distinguished: initial and final

• No ingoing edges to initial and no outgoing edges from final

• All places and transitions are on a path from initial to final
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Business processes

Suppose a professor wants to hire a student

• The student and the professor need to deal with the administration

initial

professor

student

professor’

student’

adm final

2

Behaves good even with many students at once
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Soundness problems

What would we like to verify in the previous example?

Given:

• workflow net (d ,T )

• initial: {i : 1} = (1, 0, 0, 0, 0, 0, 0) and final {f : 1} = (0, 0, 0, 0, 0, 0, 1)

Questions:

• Wherever we get from initial can we reach final?

• What if we change initial and final to (k, 0, 0, 0, 0, 0, 0) and (0, 0, 0, 0, 0, 0, k)?

These are k-soundness problem and soundness problem (1-soundness problem)

The previous example is sound and even k-sound for every k > 0
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A more difficult example

Suppose the administration has it’s own processes

adm-initial

employee1

employee2

employee3

adm-final

• One can verify it’s sound

• But not 2-sound
stuck
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adm

koniec

Combining the examples
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adm-final

final
. . .

• Recall: both examples were sound

• But now it’s not sound
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Decision problems

Given a workflow net (d ,T )

1. Classical soundness:

Determine if it is 1-sound + quasi-live (can every transition be fired)?

2. Generalised soundness:

Determine if it is k-sound for all k > 0?

3. Structural soundness:

Determine if it is k-sound for some k > 0?

• Classical soundness (1) is the most common

• Generalised soundness (2) is preserved under nice properties (e.g. composition)

• Structural soundness (3) ≈ computing k s.t. the net is k-sound

Filip Mazowiecki The complexity of soundness in workflow nets 8 / 13



Decision problems

Given a workflow net (d ,T )

1. Classical soundness:

Determine if it is 1-sound + quasi-live (can every transition be fired)?

2. Generalised soundness:

Determine if it is k-sound for all k > 0?

3. Structural soundness:

Determine if it is k-sound for some k > 0?

• Classical soundness (1) is the most common

• Generalised soundness (2) is preserved under nice properties (e.g. composition)

• Structural soundness (3) ≈ computing k s.t. the net is k-sound

Filip Mazowiecki The complexity of soundness in workflow nets 8 / 13



Decision problems

Given a workflow net (d ,T )

1. Classical soundness:

Determine if it is 1-sound + quasi-live (can every transition be fired)?

2. Generalised soundness:

Determine if it is k-sound for all k > 0?

3. Structural soundness:

Determine if it is k-sound for some k > 0?

• Classical soundness (1) is the most common

• Generalised soundness (2) is preserved under nice properties (e.g. composition)

• Structural soundness (3) ≈ computing k s.t. the net is k-sound

Filip Mazowiecki The complexity of soundness in workflow nets 8 / 13



Decision problems

Given a workflow net (d ,T )

1. Classical soundness:

Determine if it is 1-sound + quasi-live (can every transition be fired)?

2. Generalised soundness:

Determine if it is k-sound for all k > 0?

3. Structural soundness:

Determine if it is k-sound for some k > 0?

• Classical soundness (1) is the most common

• Generalised soundness (2) is preserved under nice properties (e.g. composition)

• Structural soundness (3) ≈ computing k s.t. the net is k-sound

Filip Mazowiecki The complexity of soundness in workflow nets 8 / 13



Decision problems

Given a workflow net (d ,T )

1. Classical soundness:

Determine if it is 1-sound + quasi-live (can every transition be fired)?

2. Generalised soundness:

Determine if it is k-sound for all k > 0?

3. Structural soundness:

Determine if it is k-sound for some k > 0?

• Classical soundness (1) is the most common

• Generalised soundness (2) is preserved under nice properties (e.g. composition)

• Structural soundness (3) ≈ computing k s.t. the net is k-sound

Filip Mazowiecki The complexity of soundness in workflow nets 8 / 13



Decision problems

Given a workflow net (d ,T )

1. Classical soundness:

Determine if it is 1-sound + quasi-live (can every transition be fired)?

2. Generalised soundness:

Determine if it is k-sound for all k > 0?

3. Structural soundness:

Determine if it is k-sound for some k > 0?

• Classical soundness (1) is the most common

• Generalised soundness (2) is preserved under nice properties (e.g. composition)

• Structural soundness (3) ≈ computing k s.t. the net is k-sound

Filip Mazowiecki The complexity of soundness in workflow nets 8 / 13



Decision problems

Given a workflow net (d ,T )

1. Classical soundness:

Determine if it is 1-sound + quasi-live (can every transition be fired)?

2. Generalised soundness:

Determine if it is k-sound for all k > 0?

3. Structural soundness:

Determine if it is k-sound for some k > 0?

• Classical soundness (1) is the most common

• Generalised soundness (2) is preserved under nice properties (e.g. composition)

• Structural soundness (3) ≈ computing k s.t. the net is k-sound

Filip Mazowiecki The complexity of soundness in workflow nets 8 / 13



Soundness state of art

• Classical soundness is decidable [Aalst, 1997], probably Ackermann upper bound

Some papers vaguely claim it’s EXPSPACE-hard

• Generalised soundness is decidable [Kees van Hee et al. 2004]

• Structural soundness is decidable [Ţiplea and Marinescu, 2005]

Our results

Theorem (Blondin, M., Offtermatt 2022)

1. Classical soundness is EXPSPACE-complete

2. Generalised soundness is PSPACE-complete

3. Structural soundness is EXPSPACE-complete
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Our results

Theorem (Blondin, M., Offtermatt 2022)

1. Classical soundness is EXPSPACE-complete

2. Generalised soundness is PSPACE-complete

3. Structural soundness is EXPSPACE-complete

Filip Mazowiecki The complexity of soundness in workflow nets 9 / 13



Soundness state of art

• Classical soundness is decidable [Aalst, 1997], probably Ackermann upper bound

Some papers vaguely claim it’s EXPSPACE-hard

• Generalised soundness is decidable [Kees van Hee et al. 2004]

• Structural soundness is decidable [Ţiplea and Marinescu, 2005]
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Plan

1. Petri nets

2.Workflow nets and soundness

3. Some proofs



Generalised soundness

We write m →∗
Z m′ if reachability holds in Zd (runs possibly leave Nd)

Reachability m →∗
Z m′ is NP-complete (Integer Linear Programming)

Recall that generalised soundness is ∀k {i : k} →∗ m =⇒ m →∗ {f : k}

Lemma (Kees van Hee et al. 2004)

Generalised soundness is equivalent to ∀k {i : k} →∗
Z m =⇒ m →∗ {f : k}

(we call this strong k-soundness)

Lemma (Blondin, M., Offtermatt 2022)

1. If not generalised sound then not k-sound from “small” k

2. If not k-sound then it suffices to consider “small” m

“small” = exponential (for 1-soudness (2) was double exponential)
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Proof intuition for generalised soundness

Z-unboundedness: {i : k} →∗
Z m →∗

Z m′ and m′ − m > 0 (any k)

• Checking Z-boundedness is an Integer Linear Program

Check if some multiset of transitions (seen as vectors) sums to > 0

• If a net is Z-unbounded then it’s not generalised sound

Let {i : k} →∗
Z m →∗

Z m′ and m′ − m > 0

If generalised sound then m′ →∗
Z {f : k} + m′ − m

• Suppose we conclude that {i : k} →∗
Z m then m is small

Then we can verify generalised soundness in PSPACE

(go through all reachable configurations)

Filip Mazowiecki The complexity of soundness in workflow nets 11 / 13



Proof intuition for generalised soundness

Z-unboundedness: {i : k} →∗
Z m →∗

Z m′ and m′ − m > 0 (any k)

• Checking Z-boundedness is an Integer Linear Program

Check if some multiset of transitions (seen as vectors) sums to > 0

• If a net is Z-unbounded then it’s not generalised sound

Let {i : k} →∗
Z m →∗

Z m′ and m′ − m > 0

If generalised sound then m′ →∗
Z {f : k} + m′ − m

• Suppose we conclude that {i : k} →∗
Z m then m is small

Then we can verify generalised soundness in PSPACE

(go through all reachable configurations)

Filip Mazowiecki The complexity of soundness in workflow nets 11 / 13



Proof intuition for generalised soundness

Z-unboundedness: {i : k} →∗
Z m →∗

Z m′ and m′ − m > 0 (any k)

• Checking Z-boundedness is an Integer Linear Program

Check if some multiset of transitions (seen as vectors) sums to > 0

• If a net is Z-unbounded then it’s not generalised sound

Let {i : k} →∗
Z m →∗

Z m′ and m′ − m > 0

If generalised sound then m′ →∗
Z {f : k} + m′ − m

• Suppose we conclude that {i : k} →∗
Z m then m is small

Then we can verify generalised soundness in PSPACE

(go through all reachable configurations)

Filip Mazowiecki The complexity of soundness in workflow nets 11 / 13



Proof intuition for generalised soundness

Z-unboundedness: {i : k} →∗
Z m →∗

Z m′ and m′ − m > 0 (any k)

• Checking Z-boundedness is an Integer Linear Program

Check if some multiset of transitions (seen as vectors) sums to > 0

• If a net is Z-unbounded then it’s not generalised sound

Let {i : k} →∗
Z m →∗

Z m′ and m′ − m > 0

If generalised sound then m′ →∗
Z {f : k} + m′ − m

• Suppose we conclude that {i : k} →∗
Z m then m is small

Then we can verify generalised soundness in PSPACE

(go through all reachable configurations)

Filip Mazowiecki The complexity of soundness in workflow nets 11 / 13



Proof intuition for generalised soundness

Z-unboundedness: {i : k} →∗
Z m →∗

Z m′ and m′ − m > 0 (any k)

• Checking Z-boundedness is an Integer Linear Program

Check if some multiset of transitions (seen as vectors) sums to > 0

• If a net is Z-unbounded then it’s not generalised sound

Let {i : k} →∗
Z m →∗

Z m′ and m′ − m > 0

If generalised sound then m′ →∗
Z {f : k} + m′ − m

• Suppose we conclude that {i : k} →∗
Z m then m is small

Then we can verify generalised soundness in PSPACE

(go through all reachable configurations)

Filip Mazowiecki The complexity of soundness in workflow nets 11 / 13



Proof intuition for generalised soundness

Z-unboundedness: {i : k} →∗
Z m →∗

Z m′ and m′ − m > 0 (any k)

• Checking Z-boundedness is an Integer Linear Program

Check if some multiset of transitions (seen as vectors) sums to > 0

• If a net is Z-unbounded then it’s not generalised sound

Let {i : k} →∗
Z m →∗

Z m′ and m′ − m > 0

If generalised sound then m′ →∗
Z {f : k} + m′ − m

• Suppose we conclude that {i : k} →∗
Z m then m is small

Then we can verify generalised soundness in PSPACE

(go through all reachable configurations)

Filip Mazowiecki The complexity of soundness in workflow nets 11 / 13



Proof intuition for generalised soundness

Z-unboundedness: {i : k} →∗
Z m →∗

Z m′ and m′ − m > 0 (any k)

• Checking Z-boundedness is an Integer Linear Program

Check if some multiset of transitions (seen as vectors) sums to > 0

• If a net is Z-unbounded then it’s not generalised sound

Let {i : k} →∗
Z m →∗

Z m′ and m′ − m > 0

If generalised sound then m′ →∗
Z {f : k} + m′ − m

• Suppose we conclude that {i : k} →∗
Z m then m is small

Then we can verify generalised soundness in PSPACE

(go through all reachable configurations)

Filip Mazowiecki The complexity of soundness in workflow nets 11 / 13



Reachable m are small

z⃗x⃗0

x⃗1
x⃗2

x⃗3
x⃗4 x⃗5 x⃗6 x⃗7x⃗8

z⃗x⃗0
x⃗5 x⃗8

x⃗7 x⃗2

x⃗3
x⃗4 x⃗6 x⃗1

Steinitz Lemma: if m →∗
Z m′ then one can reorder vectors

to be “close” to the line m′ − m

• Suppose {i : k} →∗
Z m and m is “big”

• Since k is “small” by Steinitz Lemma and a simple pumping argument

in the run for {i : k} →∗
Z m one can find n < n′

• By previous slide Z-unboundedness implies not generalised soundness
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Conclusion

• Soundness can be seen as a containment problem

Reachable({i : 1}) ⊆ CoReachable({f : 1})?

Containment is undecidable in general [Hack, 1975]

• For soundness many open problems

Data nets, reset nets

• The talk is based on recent papers with Michael Blondin and Philip Offtermatt

1. “The complexity of soundness in workflow nets”. LICS 2022.

2. “Verifying Generalised and Structural Soundness of Workflow Nets

via Relaxations”. CAV 2022.
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